Angle Sums of Random Polytopes

IF 0.8 3区 数学 Q2 MATHEMATICS
Thomas Godland, Z. Kabluchko, D. Zaporozhets
{"title":"Angle Sums of Random Polytopes","authors":"Thomas Godland, Z. Kabluchko, D. Zaporozhets","doi":"10.1307/mmj/20206021","DOIUrl":null,"url":null,"abstract":"For two families of random polytopes we compute explicitly the expected sums of the conic intrinsic volumes and the Grassmann angles at all faces of any given dimension of the polytope under consideration. As special cases, we compute the expected sums of internal and external angles at all faces of any fixed dimension. The first family are the Gaussian polytopes defined as convex hulls of i.i.d. samples from a non-degenerate Gaussian distribution in $\\mathbb R^d$. The second family are convex hulls of random walks with exchangeable increments satisfying certain mild general position assumption. The expected sums are expressed in terms of the angles of the regular simplices and the Stirling numbers, respectively. There are non-trivial analogies between these two settings. Further, we compute the angle sums for Gaussian projections of arbitrary polyhedral sets, of which the Gaussian polytopes are a special case. Also, we show that the expected Grassmann angle sums of a random polytope with a rotationally invariant law are invariant under affine transformations. Of independent interest may be also results on the faces of linear images of polyhedral sets. These results are well known but it seems that no detailed proofs can be found in the existing literature.","PeriodicalId":49820,"journal":{"name":"Michigan Mathematical Journal","volume":"30 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2020-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Michigan Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20206021","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 4

Abstract

For two families of random polytopes we compute explicitly the expected sums of the conic intrinsic volumes and the Grassmann angles at all faces of any given dimension of the polytope under consideration. As special cases, we compute the expected sums of internal and external angles at all faces of any fixed dimension. The first family are the Gaussian polytopes defined as convex hulls of i.i.d. samples from a non-degenerate Gaussian distribution in $\mathbb R^d$. The second family are convex hulls of random walks with exchangeable increments satisfying certain mild general position assumption. The expected sums are expressed in terms of the angles of the regular simplices and the Stirling numbers, respectively. There are non-trivial analogies between these two settings. Further, we compute the angle sums for Gaussian projections of arbitrary polyhedral sets, of which the Gaussian polytopes are a special case. Also, we show that the expected Grassmann angle sums of a random polytope with a rotationally invariant law are invariant under affine transformations. Of independent interest may be also results on the faces of linear images of polyhedral sets. These results are well known but it seems that no detailed proofs can be found in the existing literature.
随机多面体的角和
对于两类随机多面体,我们明确地计算了所考虑的多面体在任意给定维数的所有面上的二次内禀体积和格拉斯曼角的期望和。作为特殊情况,我们计算任意固定尺寸的所有面的内角和外角的期望和。第一族是高斯多面体,定义为来自$\mathbb R^d$中的非退化高斯分布的i. id个样本的凸包。第二类是具有可交换增量的随机漫步的凸包,它们满足某种温和的一般位置假设。期望和分别用正则简式和斯特林数的角表示。这两种情况之间有一些重要的相似之处。进一步,我们计算了任意多面体集高斯投影的角度和,其中高斯多面体是一个特例。此外,我们还证明了具有旋转不变律的随机多面体在仿射变换下的期望Grassmann角和是不变的。在多面体集合的线性图像的面上也可能有独立的结果。这些结果是众所周知的,但在现有文献中似乎找不到详细的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
11.10%
发文量
50
审稿时长
>12 weeks
期刊介绍: The Michigan Mathematical Journal is available electronically through the Project Euclid web site. The electronic version is available free to all paid subscribers. The Journal must receive from institutional subscribers a list of Internet Protocol Addresses in order for members of their institutions to have access to the online version of the Journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信