Deterministic Fabrication of Fluorescent Nanostructures Exhibiting Magnetic dipolar Transitions

Marijn Rikers, Ayesheh Bashiri, Angela Barreda Gomez, M. Steinert, Duk-Yong Choi, T. Pertsch, I. Staude
{"title":"Deterministic Fabrication of Fluorescent Nanostructures Exhibiting Magnetic dipolar Transitions","authors":"Marijn Rikers, Ayesheh Bashiri, Angela Barreda Gomez, M. Steinert, Duk-Yong Choi, T. Pertsch, I. Staude","doi":"10.1109/CLEO/Europe-EQEC57999.2023.10232297","DOIUrl":null,"url":null,"abstract":"The fabrication process, as shown in schematic Fig. 1A, includes spin-coating of a mixture of electron beam resist (ma-N2401) with 0.1 mass percentage of the fluorescent europium complex (Eu(TTFA)3) with a final thickness of ~80 nm. Then the film is exposed using electron beam lithography and developed. Crucially, this process gives precise control over the shape and size of the resulting fluorescent structures with a resolution of approx. 100 nm. Eu(TTFA)3 is a metal-organic coordination complex that has a well-established emission process. Specifically, the TTFA ligands absorb UV light $(\\lambda=375\\ \\text{nm})$ and through energy transfer the central $\\text{Eu}^{3+}$ ions ${}^{\\text{5}}\\text{Do}$ manifold is populated and photons are emitted in a decay transition to ${}^{7}\\mathrm{F}_{\\mathrm{j}}\\ \\{\\mathrm{j}=0$, 1, 2,3,4,5,6 $\\}. {}^{5}\\mathrm{D}_{0}\\rightarrow {}^{7}\\mathrm{F}_{1}$ and ${}^{5}\\mathrm{D}_{0}\\rightarrow {}^{7}\\mathrm{F}_{2}$ are magnetic dipole and electric dipole transitions, respectively [3]. This transition remains present after the fabrication process, for doses between 100 $\\mu \\mathrm{C}\\cdot \\text{cm}^{-2}$ and 500 $\\mu \\mathrm{C} \\cdot \\text{cm}^{-2}$, as shown in Fig. 1B.","PeriodicalId":19477,"journal":{"name":"Oceans","volume":"51 1","pages":"1-1"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Oceans","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLEO/Europe-EQEC57999.2023.10232297","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The fabrication process, as shown in schematic Fig. 1A, includes spin-coating of a mixture of electron beam resist (ma-N2401) with 0.1 mass percentage of the fluorescent europium complex (Eu(TTFA)3) with a final thickness of ~80 nm. Then the film is exposed using electron beam lithography and developed. Crucially, this process gives precise control over the shape and size of the resulting fluorescent structures with a resolution of approx. 100 nm. Eu(TTFA)3 is a metal-organic coordination complex that has a well-established emission process. Specifically, the TTFA ligands absorb UV light $(\lambda=375\ \text{nm})$ and through energy transfer the central $\text{Eu}^{3+}$ ions ${}^{\text{5}}\text{Do}$ manifold is populated and photons are emitted in a decay transition to ${}^{7}\mathrm{F}_{\mathrm{j}}\ \{\mathrm{j}=0$, 1, 2,3,4,5,6 $\}. {}^{5}\mathrm{D}_{0}\rightarrow {}^{7}\mathrm{F}_{1}$ and ${}^{5}\mathrm{D}_{0}\rightarrow {}^{7}\mathrm{F}_{2}$ are magnetic dipole and electric dipole transitions, respectively [3]. This transition remains present after the fabrication process, for doses between 100 $\mu \mathrm{C}\cdot \text{cm}^{-2}$ and 500 $\mu \mathrm{C} \cdot \text{cm}^{-2}$, as shown in Fig. 1B.
显示磁偶极跃迁的荧光纳米结构的确定性制造
制造工艺如图1A所示,包括将电子束抗蚀剂(ma-N2401)与0.1质量百分比的荧光铕配合物(Eu(TTFA)3)的混合物自旋涂覆,最终厚度为80 nm。然后用电子束光刻曝光显影。至关重要的是,这一过程可以精确控制所产生的荧光结构的形状和大小,分辨率接近。100nm。Eu(TTFA)3是一种金属-有机配合物,具有完善的发射过程。具体来说,TTFA配体吸收紫外光$(\lambda=375\ \text{nm})$,通过能量转移,中心$\text{Eu}^{3+}$离子${}^{\text{5}}\text{Do}$流形被填充,光子在到${}^{7}\mathrm{F}_{\mathrm{j}}\ \{\mathrm{j}=0$的衰变跃迁中发射,1、2、3、4、5、6 $\}. {}^{5}\mathrm{D}_{0}\rightarrow {}^{7}\mathrm{F}_{1}$和${}^{5}\mathrm{D}_{0}\rightarrow {}^{7}\mathrm{F}_{2}$分别是磁偶极子和电偶极子跃迁[3]。这种转变在制造过程之后仍然存在,剂量在100 $\mu \mathrm{C}\cdot \text{cm}^{-2}$和500 $\mu \mathrm{C} \cdot \text{cm}^{-2}$之间,如图1B所示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信