Communication Efficient Coresets for Maximum Matching

Michael Kapralov, Gilbert Maystre, Jakab Tardos
{"title":"Communication Efficient Coresets for Maximum Matching","authors":"Michael Kapralov, Gilbert Maystre, Jakab Tardos","doi":"10.1137/1.9781611976496.17","DOIUrl":null,"url":null,"abstract":"In this paper we revisit the problem of constructing randomized composable coresets for bipartite matching. In this problem the input graph is randomly partitioned across $k$ players, each of which sends a single message to a coordinator, who then must output a good approximation to the maximum matching in the input graph. Assadi and Khanna gave the first such coreset, achieving a $1/9$-approximation by having every player send a maximum matching, i.e. at most $n/2$ words per player. The approximation factor was improved to $1/3$ by Bernstein et al. \nIn this paper, we show that the matching skeleton construction of Goel, Kapralov and Khanna, which is a carefully chosen (fractional) matching, is a randomized composable coreset that achieves a $1/2-o(1)$ approximation using at most $n-1$ words of communication per player. We also show an upper bound of $2/3+o(1)$ on the approximation ratio achieved by this coreset.","PeriodicalId":93491,"journal":{"name":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","volume":"18 1","pages":"156-164"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIAM Symposium on Simplicity in Algorithms (SOSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/1.9781611976496.17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we revisit the problem of constructing randomized composable coresets for bipartite matching. In this problem the input graph is randomly partitioned across $k$ players, each of which sends a single message to a coordinator, who then must output a good approximation to the maximum matching in the input graph. Assadi and Khanna gave the first such coreset, achieving a $1/9$-approximation by having every player send a maximum matching, i.e. at most $n/2$ words per player. The approximation factor was improved to $1/3$ by Bernstein et al. In this paper, we show that the matching skeleton construction of Goel, Kapralov and Khanna, which is a carefully chosen (fractional) matching, is a randomized composable coreset that achieves a $1/2-o(1)$ approximation using at most $n-1$ words of communication per player. We also show an upper bound of $2/3+o(1)$ on the approximation ratio achieved by this coreset.
最大匹配的通信高效核心集
本文研究了二部匹配的随机可组合核心集的构造问题。在这个问题中,输入图被随机划分为$k$玩家,每个玩家都向协调器发送一条消息,协调器必须输出输入图中最大匹配的良好近似值。Assadi和Khanna给出了第一个这样的核心集,通过让每个玩家发送一个最大匹配,即每个玩家最多发送n/2个单词,实现了1/9美元的近似值。Bernstein等人将近似因子提高到$1/3$。在本文中,我们展示了Goel, Kapralov和Khanna的匹配骨架结构,这是一个精心选择的(分数)匹配,是一个随机可组合的核心集,它使用每个玩家最多$n-1$个通信单词来实现$1/2-o(1)$近似。我们还显示了由该核心集实现的近似比率的上限为2/3+o(1)$。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信