{"title":"Superconvergent discontinuous Galerkin methods for nonlinear parabolic initial and boundary value problems","authors":"Sangita Yadav, A. K. Pani","doi":"10.1515/jnma-2018-0035","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we discuss error estimates for nonlinear parabolic problems using discontinuous Galerkin methods which include HDG method in the spatial direction while keeping time variable continuous. When piecewise polynomials of degree k ⩾ 1 are used to approximate both the potential as well as the flux, it is shown that the error estimate for the semi-discrete flux in L∞(0, T; L2)-norm is of order k + 1. With the help of a suitable post-processing of the semi-discrete potential, it is proved that the resulting post-processed potential converges with order of convergence O(log(T/h2)hk+2) $\\begin{array}{} \\displaystyle O\\big(\\!\\sqrt{{}\\log(T/h^2)}\\,h^{k+2}\\big) \\end{array}$ in L∞(0, T; L2)-norm. These results extend the HDG analysis of Chabaud and Cockburn [Math. Comp. 81 (2012), 107–129] for the heat equation to non-linear parabolic problems.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2018-0035","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3
Abstract
Abstract In this article, we discuss error estimates for nonlinear parabolic problems using discontinuous Galerkin methods which include HDG method in the spatial direction while keeping time variable continuous. When piecewise polynomials of degree k ⩾ 1 are used to approximate both the potential as well as the flux, it is shown that the error estimate for the semi-discrete flux in L∞(0, T; L2)-norm is of order k + 1. With the help of a suitable post-processing of the semi-discrete potential, it is proved that the resulting post-processed potential converges with order of convergence O(log(T/h2)hk+2) $\begin{array}{} \displaystyle O\big(\!\sqrt{{}\log(T/h^2)}\,h^{k+2}\big) \end{array}$ in L∞(0, T; L2)-norm. These results extend the HDG analysis of Chabaud and Cockburn [Math. Comp. 81 (2012), 107–129] for the heat equation to non-linear parabolic problems.
期刊介绍:
The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.