Superconvergent discontinuous Galerkin methods for nonlinear parabolic initial and boundary value problems

IF 3.8 2区 数学 Q1 MATHEMATICS
Sangita Yadav, A. K. Pani
{"title":"Superconvergent discontinuous Galerkin methods for nonlinear parabolic initial and boundary value problems","authors":"Sangita Yadav, A. K. Pani","doi":"10.1515/jnma-2018-0035","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we discuss error estimates for nonlinear parabolic problems using discontinuous Galerkin methods which include HDG method in the spatial direction while keeping time variable continuous. When piecewise polynomials of degree k ⩾ 1 are used to approximate both the potential as well as the flux, it is shown that the error estimate for the semi-discrete flux in L∞(0, T; L2)-norm is of order k + 1. With the help of a suitable post-processing of the semi-discrete potential, it is proved that the resulting post-processed potential converges with order of convergence O(log⁡(T/h2)hk+2) $\\begin{array}{} \\displaystyle O\\big(\\!\\sqrt{{}\\log(T/h^2)}\\,h^{k+2}\\big) \\end{array}$ in L∞(0, T; L2)-norm. These results extend the HDG analysis of Chabaud and Cockburn [Math. Comp. 81 (2012), 107–129] for the heat equation to non-linear parabolic problems.","PeriodicalId":50109,"journal":{"name":"Journal of Numerical Mathematics","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/jnma-2018-0035","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

Abstract In this article, we discuss error estimates for nonlinear parabolic problems using discontinuous Galerkin methods which include HDG method in the spatial direction while keeping time variable continuous. When piecewise polynomials of degree k ⩾ 1 are used to approximate both the potential as well as the flux, it is shown that the error estimate for the semi-discrete flux in L∞(0, T; L2)-norm is of order k + 1. With the help of a suitable post-processing of the semi-discrete potential, it is proved that the resulting post-processed potential converges with order of convergence O(log⁡(T/h2)hk+2) $\begin{array}{} \displaystyle O\big(\!\sqrt{{}\log(T/h^2)}\,h^{k+2}\big) \end{array}$ in L∞(0, T; L2)-norm. These results extend the HDG analysis of Chabaud and Cockburn [Math. Comp. 81 (2012), 107–129] for the heat equation to non-linear parabolic problems.
非线性抛物型初值和边值问题的超收敛不连续Galerkin方法
摘要本文讨论了非线性抛物问题的不连续Galerkin方法的误差估计,该方法在空间方向上包含HDG方法,同时保持时间变量连续。当使用k小于1度的分段多项式来近似势和通量时,结果表明,L∞(0,T;L2)范数是k + 1阶的。通过对半离散势进行适当的后处理,证明了后处理后的势在L∞(0,T)上收敛阶为O(log (T/h2)hk+2) $\begin{array}{} \displaystyle O\big(\!\sqrt{{}\log(T/h^2)}\,h^{k+2}\big) \end{array}$;L2)-norm。这些结果扩展了Chabaud和Cockburn的HDG分析[数学]。非线性抛物问题的热方程[j] .计算机工程学报,2012,37(1),107-129。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.90
自引率
3.30%
发文量
17
审稿时长
>12 weeks
期刊介绍: The Journal of Numerical Mathematics (formerly East-West Journal of Numerical Mathematics) contains high-quality papers featuring contemporary research in all areas of Numerical Mathematics. This includes the development, analysis, and implementation of new and innovative methods in Numerical Linear Algebra, Numerical Analysis, Optimal Control/Optimization, and Scientific Computing. The journal will also publish applications-oriented papers with significant mathematical content in computational fluid dynamics and other areas of computational engineering, finance, and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信