Diffeomorphisms of scalar quantum fields via generating functions

IF 1.5 Q2 PHYSICS, MATHEMATICAL
Ali Assem Mahmoud, K. Yeats
{"title":"Diffeomorphisms of scalar quantum fields via generating functions","authors":"Ali Assem Mahmoud, K. Yeats","doi":"10.4171/aihpd/161","DOIUrl":null,"url":null,"abstract":"We study the application of formal diffeomorphisms to scalar fields. We give a new proof that interacting tree amplitudes vanish in the resulting theories. Our proof is directly at the diagrammatic level, not appealing to the path integral, and proceeds via a generating function analysis so is more insightful than previous proofs. Along the way we give new combinatorial proofs of some Bell polynomial identities, and we comment on the connection with the combinatorial Legendre transform.","PeriodicalId":42884,"journal":{"name":"Annales de l Institut Henri Poincare D","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2020-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales de l Institut Henri Poincare D","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/aihpd/161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 3

Abstract

We study the application of formal diffeomorphisms to scalar fields. We give a new proof that interacting tree amplitudes vanish in the resulting theories. Our proof is directly at the diagrammatic level, not appealing to the path integral, and proceeds via a generating function analysis so is more insightful than previous proofs. Along the way we give new combinatorial proofs of some Bell polynomial identities, and we comment on the connection with the combinatorial Legendre transform.
通过生成函数的标量量子场的微分同态
研究了形式微分同态在标量场中的应用。我们给出了一个新的证明,相互作用的树振幅在由此产生的理论中消失。我们的证明直接在图解层面上,而不是诉诸于路径积分,并通过生成函数分析进行,因此比以前的证明更有洞察力。在此过程中,我们给出了一些贝尔多项式恒等式的新的组合证明,并评论了它们与组合勒让德变换的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.30
自引率
0.00%
发文量
16
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信