Monotone Iterations for Elliptic Variational Inequalities

R. Kornhuber
{"title":"Monotone Iterations for Elliptic Variational Inequalities","authors":"R. Kornhuber","doi":"10.1201/9780203755518-30","DOIUrl":null,"url":null,"abstract":"A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non–differentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex min- imization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the conver- gence speed. We present a general convergence theory and discuss several applications.","PeriodicalId":12357,"journal":{"name":"Free boundary problems:","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Free boundary problems:","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780203755518-30","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non–differentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex min- imization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the conver- gence speed. We present a general convergence theory and discuss several applications.
椭圆型变分不等式的单调迭代
工程和工业中出现的广泛的自由边界问题可以被重写为一个严格凸、分段光滑但不可微的能量泛函的最小化问题。相关离散问题的快速解是一个非常微妙的问题,因为通常的牛顿技术不能应用。我们提出了一种基于凸极小化和约束牛顿型线性化的新方法。而凸极小化提供了整体迭代的全局收敛性,随后的约束牛顿型线性化旨在加快收敛速度。我们提出了一个一般的收敛理论,并讨论了几个应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信