A Property Satisfying Reducedness over Centers

IF 0.4 4区 数学 Q4 MATHEMATICS
Hai-Lan Jin, T. Kwak, Yang Lee, Zhelin Piao
{"title":"A Property Satisfying Reducedness over Centers","authors":"Hai-Lan Jin, T. Kwak, Yang Lee, Zhelin Piao","doi":"10.1142/S1005386721000353","DOIUrl":null,"url":null,"abstract":"This article concerns a ring property called pseudo-reduced-over-center that is satisfied by free algebras over commutative reduced rings. The properties of radicals of pseudo-reduced-over-center rings are investigated, especially related to polynomial rings. It is proved that for pseudo-reduced-over-center rings of nonzero characteristic, the centers and the pseudo-reduced-over-center property are preserved through factor rings modulo nil ideals. For a locally finite ring [Formula: see text], it is proved that if [Formula: see text] is pseudo-reduced-over-center, then [Formula: see text] is commutative and [Formula: see text] is a commutative regular ring with [Formula: see text] nil, where [Formula: see text] is the Jacobson radical of [Formula: see text].","PeriodicalId":50958,"journal":{"name":"Algebra Colloquium","volume":"63 1","pages":""},"PeriodicalIF":0.4000,"publicationDate":"2021-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra Colloquium","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/S1005386721000353","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article concerns a ring property called pseudo-reduced-over-center that is satisfied by free algebras over commutative reduced rings. The properties of radicals of pseudo-reduced-over-center rings are investigated, especially related to polynomial rings. It is proved that for pseudo-reduced-over-center rings of nonzero characteristic, the centers and the pseudo-reduced-over-center property are preserved through factor rings modulo nil ideals. For a locally finite ring [Formula: see text], it is proved that if [Formula: see text] is pseudo-reduced-over-center, then [Formula: see text] is commutative and [Formula: see text] is a commutative regular ring with [Formula: see text] nil, where [Formula: see text] is the Jacobson radical of [Formula: see text].
一个满足中心上约简性的性质
本文讨论了交换约简环上的自由代数所满足的环的伪中心约简性质。研究了伪中心约化环的根的性质,特别是与多项式环有关的根的性质。证明了对于非零特征的伪中心约环,通过因子环模零理想,中心和伪中心约环的性质得以保留。对于一个局部有限环[公式:见文],证明了如果[公式:见文]是伪中心约化,则[公式:见文]是可交换正则环,且[公式:见文]为零,其中[公式:见文]是[公式:见文]的Jacobson根。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Algebra Colloquium
Algebra Colloquium 数学-数学
CiteScore
0.60
自引率
0.00%
发文量
625
审稿时长
15.6 months
期刊介绍: Algebra Colloquium is an international mathematical journal founded at the beginning of 1994. It is edited by the Academy of Mathematics & Systems Science, Chinese Academy of Sciences, jointly with Suzhou University, and published quarterly in English in every March, June, September and December. Algebra Colloquium carries original research articles of high level in the field of pure and applied algebra. Papers from related areas which have applications to algebra are also considered for publication. This journal aims to reflect the latest developments in algebra and promote international academic exchanges.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信