Image Enlargement Research based on New Power Series - Newton Interpolation Algorithm

Lihua Hao, Naifan Zhang, Zhumao Lu, Yangjun Zhang
{"title":"Image Enlargement Research based on New Power Series - Newton Interpolation Algorithm","authors":"Lihua Hao, Naifan Zhang, Zhumao Lu, Yangjun Zhang","doi":"10.1109/IAEAC.2018.8577564","DOIUrl":null,"url":null,"abstract":"Image interpolation is one of the important techniques in image enlargement. Traditional linear interpolation and bi-cubic interpolation methods are unable to guarantee the derivative continuity at the end point of the interpolated interval. In the case of large-scale enlargement, there will be a Block or fuzzy phenomenon. In this paper, a new power series - Newton interpolation algorithm is proposed to achieve high resolution enlargement. The interpolation principle based on the new algorithm is also analyzed: At first, the programme construct the new power-series function, then this function is used to get the derivative, finally the derivative is utilized to construct the Newton-interpolation function. The test result shows that this algorithm can well reflect the gray-level change even in large-scale enlargement, can make up for the defects of the traditional algorithms.","PeriodicalId":6573,"journal":{"name":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","volume":"22 1","pages":"2023-2027"},"PeriodicalIF":0.0000,"publicationDate":"2018-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 3rd Advanced Information Technology, Electronic and Automation Control Conference (IAEAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IAEAC.2018.8577564","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Image interpolation is one of the important techniques in image enlargement. Traditional linear interpolation and bi-cubic interpolation methods are unable to guarantee the derivative continuity at the end point of the interpolated interval. In the case of large-scale enlargement, there will be a Block or fuzzy phenomenon. In this paper, a new power series - Newton interpolation algorithm is proposed to achieve high resolution enlargement. The interpolation principle based on the new algorithm is also analyzed: At first, the programme construct the new power-series function, then this function is used to get the derivative, finally the derivative is utilized to construct the Newton-interpolation function. The test result shows that this algorithm can well reflect the gray-level change even in large-scale enlargement, can make up for the defects of the traditional algorithms.
基于新幂级数牛顿插值算法的图像放大研究
图像插值是图像放大的重要技术之一。传统的线性插值和双三次插值方法不能保证插值区间端点处导数的连续性。在大规模放大的情况下,会出现块化或模糊现象。本文提出了一种新的幂级数牛顿插值算法,以实现图像的高分辨率放大。分析了基于新算法的插值原理:首先用程序构造新的幂级数函数,然后用该函数求导数,最后利用导数构造牛顿插值函数。测试结果表明,该算法即使在大规模放大情况下也能很好地反映灰度变化,弥补了传统算法的不足。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信