Improved parameter estimation of linear systems with noisy data

W. Zheng
{"title":"Improved parameter estimation of linear systems with noisy data","authors":"W. Zheng","doi":"10.1109/ISCAS.2000.858799","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of parameter estimation of linear systems with noisy input-output measurements. A new and simple estimation scheme for the variances of the white input and output measurement noises is presented which is based on expanding the denominator polynomial of the system transfer function only and makes no use of the average least-squares (LS) errors. The attractive feature of the iterative LS based parametric algorithm thus developed is its improved convergence property. The effectiveness of the developed identification algorithm is demonstrated through numerical illustrations.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.858799","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper addresses the problem of parameter estimation of linear systems with noisy input-output measurements. A new and simple estimation scheme for the variances of the white input and output measurement noises is presented which is based on expanding the denominator polynomial of the system transfer function only and makes no use of the average least-squares (LS) errors. The attractive feature of the iterative LS based parametric algorithm thus developed is its improved convergence property. The effectiveness of the developed identification algorithm is demonstrated through numerical illustrations.
带噪声线性系统参数估计的改进
研究了具有噪声输入输出测量的线性系统的参数估计问题。提出了一种新的、简单的白输入输出测量噪声方差估计方案,该方案仅基于系统传递函数的分母多项式展开,不使用平均最小二乘误差。所开发的基于迭代LS的参数化算法的吸引人的特点是其改进的收敛性。通过数值算例验证了该识别算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信