{"title":"RSCS: a parallel simplex algorithm for the Nimrod/O optimization toolset","authors":"A. Lewis, D. Abramson, T. Peachey","doi":"10.1109/ISPDC.2004.44","DOIUrl":null,"url":null,"abstract":"This paper describes a method of parallelisation of the popular Nelder-Mead simplex optimization algorithms that can lead to enhanced performance on parallel and distributed computing resources. A reducing set of simplex vertices are used to derive search directions generally closely aligned with the local gradient. When tested on a range of problems drawn from real-world applications in science and engineering, this reducing set concurrent simplex (RSCS) variant of the Nelder-Mead algorithm compared favourably with the original algorithm, and also with the inherently parallel multidirectional search algorithm (MDS). All algorithms were implemented and tested in a general-purpose, grid-enabled optimization toolset.","PeriodicalId":62714,"journal":{"name":"骈文研究","volume":"39 1","pages":"71-78"},"PeriodicalIF":0.0000,"publicationDate":"2004-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"骈文研究","FirstCategoryId":"1092","ListUrlMain":"https://doi.org/10.1109/ISPDC.2004.44","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13
Abstract
This paper describes a method of parallelisation of the popular Nelder-Mead simplex optimization algorithms that can lead to enhanced performance on parallel and distributed computing resources. A reducing set of simplex vertices are used to derive search directions generally closely aligned with the local gradient. When tested on a range of problems drawn from real-world applications in science and engineering, this reducing set concurrent simplex (RSCS) variant of the Nelder-Mead algorithm compared favourably with the original algorithm, and also with the inherently parallel multidirectional search algorithm (MDS). All algorithms were implemented and tested in a general-purpose, grid-enabled optimization toolset.