SYMBOLS: SOFTWARE FOR SOCIAL NETWORK ANALYSIS

Branko Arsić, Ljubiša Bojić, I. Milentijevic, P. Spalevic, D. Rancic
{"title":"SYMBOLS: SOFTWARE FOR SOCIAL NETWORK ANALYSIS","authors":"Branko Arsić, Ljubiša Bojić, I. Milentijevic, P. Spalevic, D. Rancic","doi":"10.22190/FUACR1803205A","DOIUrl":null,"url":null,"abstract":"The unique possibilities of the online social networks such as real-time data access, knowledge of users’ changing preferences and access to their statuses provide the possibility for innovation in the analysis of people’s behavior and opinions, when compared to classical offline methods. Literature review shows lack of studies about the use of public Facebook data in Serbia for the improvement of different product sale, political or promotional campaigns, recommender systems, etc. In this paper, we present the way how data from Facebook can be collected in order to gain insight into the individuals’ preferences and statuses, as well as their connection to a company's fan pages. In particular, we present data collection framework – Symbols – used for collecting individual specific data. The framework stores data into local database and involves a module for graph and content-based analysis of these data. The proposed framework for social network analysis can be used as a decision-making system in users’ preferences implementation thus creating a space for business improvements in various areas.","PeriodicalId":93645,"journal":{"name":"Facta universitatis. Series, Mechanics, automatic control and robotics","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Facta universitatis. Series, Mechanics, automatic control and robotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22190/FUACR1803205A","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The unique possibilities of the online social networks such as real-time data access, knowledge of users’ changing preferences and access to their statuses provide the possibility for innovation in the analysis of people’s behavior and opinions, when compared to classical offline methods. Literature review shows lack of studies about the use of public Facebook data in Serbia for the improvement of different product sale, political or promotional campaigns, recommender systems, etc. In this paper, we present the way how data from Facebook can be collected in order to gain insight into the individuals’ preferences and statuses, as well as their connection to a company's fan pages. In particular, we present data collection framework – Symbols – used for collecting individual specific data. The framework stores data into local database and involves a module for graph and content-based analysis of these data. The proposed framework for social network analysis can be used as a decision-making system in users’ preferences implementation thus creating a space for business improvements in various areas.
符号:社会网络分析软件
与传统的线下方法相比,在线社交网络的独特可能性,如实时数据访问、了解用户不断变化的偏好和获取他们的状态,为人们的行为和观点分析提供了创新的可能性。文献综述显示,缺乏关于在塞尔维亚使用公共Facebook数据来改进不同产品销售、政治或促销活动、推荐系统等的研究。在本文中,我们介绍了如何从Facebook收集数据,以深入了解个人偏好和状态,以及他们与公司粉丝页面的联系。特别地,我们提出了数据收集框架-符号-用于收集个人特定数据。该框架将数据存储到本地数据库中,并包含一个模块,用于对这些数据进行图形和基于内容的分析。提出的社会网络分析框架可以作为用户偏好实施的决策系统,从而为各个领域的业务改进创造空间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信