On the cardinality of n-Urysohn and n-Hausdorff spaces

M. Bonanzinga, M. V. Cuzzupè, B. Pansera
{"title":"On the cardinality of n-Urysohn and n-Hausdorff spaces","authors":"M. Bonanzinga, M. V. Cuzzupè, B. Pansera","doi":"10.2478/s11533-013-0339-0","DOIUrl":null,"url":null,"abstract":"Two variations of Arhangelskii’s inequality $$\\left| X \\right| \\leqslant 2^{\\chi (X) - L(X)}$$ for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.","PeriodicalId":50988,"journal":{"name":"Central European Journal of Mathematics","volume":"16 1","pages":"330-336"},"PeriodicalIF":0.0000,"publicationDate":"2014-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Central European Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/s11533-013-0339-0","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Two variations of Arhangelskii’s inequality $$\left| X \right| \leqslant 2^{\chi (X) - L(X)}$$ for Hausdorff X [Arhangel’skii A.V., The power of bicompacta with first axiom of countability, Dokl. Akad. Nauk SSSR, 1969, 187, 967–970 (in Russian)] given in [Stavrova D.N., Separation pseudocharacter and the cardinality of topological spaces, Topology Proc., 2000, 25(Summer), 333–343] are extended to the classes with finite Urysohn number or finite Hausdorff number.
关于n-Urysohn和n-Hausdorff空间的基数性
关于Hausdorff X的Arhangelskii不等式$$\left| X \right| \leqslant 2^{\chi (X) - L(X)}$$的两种变化[j] . Arhangel 'skii A.V,具有可数性第一公理的双紧性的幂。阿卡德。[Stavrova D.N.,分离伪特征和拓扑空间的基数,拓扑学报,2000,25(夏季),333-343]给出的Nauk ssr, 1969,187,967 - 970(文)]推广到有限Urysohn数或有限Hausdorff数的类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
3-8 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信