{"title":"TiN/GaN Metal/Semiconductor Multilayers for Thermionic Energy Conversion","authors":"V. Rawat, T. Sands","doi":"10.1201/9780429187469-17","DOIUrl":null,"url":null,"abstract":"TiN-GaN multilayers were grown for potential application as solid-state thermionic direct energy conversion devices using reactive pulsed laser deposition in an ammonia ambient. The crystallographic analysis of the multilayers by high-resolution x-ray diffraction and crosssectional TEM revealed that, despite the difference in crystal structures of TiN and GaN, it was possible to grow thick uniaxially textured columnar-grained multilayers. Inplane electronic transport was assessed using Hall effect and Seebeck coefficient measurements. Thermal conductivity measurements have shown that by increasing the interface density, the cross-plane thermal conductivity of the multilayers can be reduced to 3.6 W/m-K, compared to 135 W/mK for bulk GaN and 38 W/mK for bulk TiN.","PeriodicalId":6429,"journal":{"name":"2007 Cleantech Conference and Trade Show Cleantech 2007","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Cleantech Conference and Trade Show Cleantech 2007","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429187469-17","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
TiN-GaN multilayers were grown for potential application as solid-state thermionic direct energy conversion devices using reactive pulsed laser deposition in an ammonia ambient. The crystallographic analysis of the multilayers by high-resolution x-ray diffraction and crosssectional TEM revealed that, despite the difference in crystal structures of TiN and GaN, it was possible to grow thick uniaxially textured columnar-grained multilayers. Inplane electronic transport was assessed using Hall effect and Seebeck coefficient measurements. Thermal conductivity measurements have shown that by increasing the interface density, the cross-plane thermal conductivity of the multilayers can be reduced to 3.6 W/m-K, compared to 135 W/mK for bulk GaN and 38 W/mK for bulk TiN.