{"title":"Effect of fibre arrangements on tensile properties of 3D printed continuous fibre-reinforced thermoplastic composites","authors":"Wei Chen, Qiu-yang Zhang, H. Cao, Ye Yuan","doi":"10.1080/14658011.2021.1939588","DOIUrl":null,"url":null,"abstract":"ABSTRACT Continuous fiber reinforced thermoplastic composites (CFRTPCs) with advantages of great mechanical properties and green recyclability, have been widely used in aerospace, transportation, sports and leisure products, etc. This study applied the 3D printing process for the integrated rapid manufacturing of CFRTPCs. The volume fraction and distribution arrangement of fiber reinforcement were designed to evaluate the effect of fiber arrangements on tensile properties of the printed composites. The experimental results proved that some outer and inner defects reduced the surface smoothness and tensile properties based on the analysis of macro and micro morphology. The fiber distributed evenly contributed to the dimensional precision and stability, as well as tensile properties. With the increasing fiber volume, the elastic modulus and ultimate tensile strength both approximately increased while the strain at break decreased. This work promises a significant contribution to the abilities of designing fiber arrangements to control tensile properties of 3D printed CFRTPCs.","PeriodicalId":20245,"journal":{"name":"Plastics, Rubber and Composites","volume":"53 19 1","pages":"85 - 97"},"PeriodicalIF":2.1000,"publicationDate":"2021-06-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plastics, Rubber and Composites","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/14658011.2021.1939588","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT Continuous fiber reinforced thermoplastic composites (CFRTPCs) with advantages of great mechanical properties and green recyclability, have been widely used in aerospace, transportation, sports and leisure products, etc. This study applied the 3D printing process for the integrated rapid manufacturing of CFRTPCs. The volume fraction and distribution arrangement of fiber reinforcement were designed to evaluate the effect of fiber arrangements on tensile properties of the printed composites. The experimental results proved that some outer and inner defects reduced the surface smoothness and tensile properties based on the analysis of macro and micro morphology. The fiber distributed evenly contributed to the dimensional precision and stability, as well as tensile properties. With the increasing fiber volume, the elastic modulus and ultimate tensile strength both approximately increased while the strain at break decreased. This work promises a significant contribution to the abilities of designing fiber arrangements to control tensile properties of 3D printed CFRTPCs.
期刊介绍:
Plastics, Rubber and Composites: Macromolecular Engineering provides an international forum for the publication of original, peer-reviewed research on the macromolecular engineering of polymeric and related materials and polymer matrix composites. Modern polymer processing is increasingly focused on macromolecular engineering: the manipulation of structure at the molecular scale to control properties and fitness for purpose of the final component. Intimately linked to this are the objectives of predicting properties in the context of an optimised design and of establishing robust processing routes and process control systems allowing the desired properties to be achieved reliably.