Clemens Helfmeier, C. Boit, Dmitry Nedospasov, Shahin Tajik, Jean-Pierre Seifert
{"title":"Physical vulnerabilities of Physically Unclonable Functions","authors":"Clemens Helfmeier, C. Boit, Dmitry Nedospasov, Shahin Tajik, Jean-Pierre Seifert","doi":"10.7873/DATE.2014.363","DOIUrl":null,"url":null,"abstract":"In recent years one of the most popular areas of research in hardware security has been Physically Unclonable Functions (PUF). PUFs provide primitives for implementing tamper detection, encryption and device fingerprinting. One particularly common application is replacing Non-volatile Memory (NVM) as key storage in embedded devices like smart cards and secure microcontrollers. Though a wide array of PUF have been demonstrated in the academic literature, vendors have only begun to roll out PUFs in their end-user products. Moreover, the improvement to overall system security provided by PUFs is still the subject of much debate. This work reviews the state of the art of PUFs in general, and as a replacement for key storage in particular. We review also techniques and methodologies which make the physical response characterization and physical/digital cloning of PUFs possible.","PeriodicalId":6550,"journal":{"name":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","volume":"33 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"31","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 Design, Automation & Test in Europe Conference & Exhibition (DATE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7873/DATE.2014.363","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 31
Abstract
In recent years one of the most popular areas of research in hardware security has been Physically Unclonable Functions (PUF). PUFs provide primitives for implementing tamper detection, encryption and device fingerprinting. One particularly common application is replacing Non-volatile Memory (NVM) as key storage in embedded devices like smart cards and secure microcontrollers. Though a wide array of PUF have been demonstrated in the academic literature, vendors have only begun to roll out PUFs in their end-user products. Moreover, the improvement to overall system security provided by PUFs is still the subject of much debate. This work reviews the state of the art of PUFs in general, and as a replacement for key storage in particular. We review also techniques and methodologies which make the physical response characterization and physical/digital cloning of PUFs possible.