Graphs with unique minimum vertex-edge dominating sets

B. Senthilkumar, M. Chellali, H. N. Kumar, Y. B. Venkatakrishnan
{"title":"Graphs with unique minimum vertex-edge dominating sets","authors":"B. Senthilkumar, M. Chellali, H. N. Kumar, Y. B. Venkatakrishnan","doi":"10.1051/ro/2023074","DOIUrl":null,"url":null,"abstract":"A vertex u of a graph G = ( V,E ), ve -dominates every edge incident to u , as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set (or a ved–set for short) if every edge of E is ve- dominated by at least one vertex of S . The vertex-edge domination number is the minimum cardinality of a ved–set in G. In this paper, we investigate the graphs having unique minimum ved-sets that we will call UVED-graphs. We start by giving some basic properties of UVED-graphs. For the class of trees, we establish two equivalent conditions characterizing UVED-trees which we subsequently complete by providing a constructive characterization.","PeriodicalId":20872,"journal":{"name":"RAIRO Oper. Res.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Oper. Res.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ro/2023074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A vertex u of a graph G = ( V,E ), ve -dominates every edge incident to u , as well as every edge adjacent to these incident edges. A set S ⊆ V is a vertex-edge dominating set (or a ved–set for short) if every edge of E is ve- dominated by at least one vertex of S . The vertex-edge domination number is the minimum cardinality of a ved–set in G. In this paper, we investigate the graphs having unique minimum ved-sets that we will call UVED-graphs. We start by giving some basic properties of UVED-graphs. For the class of trees, we establish two equivalent conditions characterizing UVED-trees which we subsequently complete by providing a constructive characterization.
具有唯一最小顶点边缘支配集的图
图G = (V,E), ve -的顶点u支配着与u相关的每条边,以及与这些相关边相邻的每条边。若集合S的每条边都被S的至少一个顶点控制,则集S是一个点边控制集(简称为维集)。在本文中,我们研究了具有唯一最小维集的图,我们称之为ued图。我们首先给出uvid图的一些基本性质。对于这类树,我们建立了两个等价条件来描述uded树的特征,随后我们通过提供一个建设性的特征来完成这两个等价条件。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信