Talking With Hands 16.2M: A Large-Scale Dataset of Synchronized Body-Finger Motion and Audio for Conversational Motion Analysis and Synthesis

Gilwoo Lee, Zhiwei Deng, Shugao Ma, Takaaki Shiratori, S. Srinivasa, Yaser Sheikh
{"title":"Talking With Hands 16.2M: A Large-Scale Dataset of Synchronized Body-Finger Motion and Audio for Conversational Motion Analysis and Synthesis","authors":"Gilwoo Lee, Zhiwei Deng, Shugao Ma, Takaaki Shiratori, S. Srinivasa, Yaser Sheikh","doi":"10.1109/ICCV.2019.00085","DOIUrl":null,"url":null,"abstract":"We present a 16.2-million frame (50-hour) multimodal dataset of two-person face-to-face spontaneous conversations. Our dataset features synchronized body and finger motion as well as audio data. To the best of our knowledge, it represents the largest motion capture and audio dataset of natural conversations to date. The statistical analysis verifies strong intraperson and interperson covariance of arm, hand, and speech features, potentially enabling new directions on data-driven social behavior analysis, prediction, and synthesis. As an illustration, we propose a novel real-time finger motion synthesis method: a temporal neural network innovatively trained with an inverse kinematics (IK) loss, which adds skeletal structural information to the generative model. Our qualitative user study shows that the finger motion generated by our method is perceived as natural and conversation enhancing, while the quantitative ablation study demonstrates the effectiveness of IK loss.","PeriodicalId":6728,"journal":{"name":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","volume":"14 1","pages":"763-772"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"65","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE/CVF International Conference on Computer Vision (ICCV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2019.00085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 65

Abstract

We present a 16.2-million frame (50-hour) multimodal dataset of two-person face-to-face spontaneous conversations. Our dataset features synchronized body and finger motion as well as audio data. To the best of our knowledge, it represents the largest motion capture and audio dataset of natural conversations to date. The statistical analysis verifies strong intraperson and interperson covariance of arm, hand, and speech features, potentially enabling new directions on data-driven social behavior analysis, prediction, and synthesis. As an illustration, we propose a novel real-time finger motion synthesis method: a temporal neural network innovatively trained with an inverse kinematics (IK) loss, which adds skeletal structural information to the generative model. Our qualitative user study shows that the finger motion generated by our method is perceived as natural and conversation enhancing, while the quantitative ablation study demonstrates the effectiveness of IK loss.
用手说话16.2M:用于会话运动分析和合成的同步身体-手指运动和音频的大规模数据集
我们提出了一个1620万帧(50小时)的双人面对面自发对话的多模式数据集。我们的数据集具有同步的身体和手指运动以及音频数据。据我们所知,它代表了迄今为止最大的自然对话的动作捕捉和音频数据集。统计分析验证了手臂,手和语音特征的强内部和人际协方差,可能为数据驱动的社会行为分析,预测和综合提供新的方向。为了说明这一点,我们提出了一种新的实时手指运动合成方法:一种创新地使用逆运动学(IK)损失训练的时间神经网络,它将骨骼结构信息添加到生成模型中。我们的定性用户研究表明,通过我们的方法产生的手指运动被认为是自然的,并增强了会话,而定量消融研究表明了IK损失的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信