Excellent low temperature passivation scheme with reduced optical absorption for back amorphous-crystalline silicon heterojunction (BACH) photovoltaic device
Z. R. Chowdhury, D. Stepanov, D. Yeghikyan, N. Kherani
{"title":"Excellent low temperature passivation scheme with reduced optical absorption for back amorphous-crystalline silicon heterojunction (BACH) photovoltaic device","authors":"Z. R. Chowdhury, D. Stepanov, D. Yeghikyan, N. Kherani","doi":"10.1109/PVSC.2012.6317777","DOIUrl":null,"url":null,"abstract":"Low temperature processing of silicon photovoltaic (PV) solar cells with excellent passivation quality enables the effective use of ultra-thin wafers for solar cell manufacturing, thus paving the way for high-efficiency low-cost silicon photovoltaics. This article presents Back Amorphous-Crystalline Silicon Heterojunction (BACH) cell performance using low temperature (<;= 400°C) facile native oxide-PECVD silicon nitride (SiNx) dual layer passivation scheme. The cell performance is also compared with the BACH cells fabricated using intrinsic hydrogenated amorphous silicon (i-aSi:H) and PECVD SiNx layer passivation. Reduced optical absorption in the native oxide-SiNx passivation layer resulted in a higher short-circuit current, JSC, compared to the i-aSi:H-SiNx passivated cells. The fill-factor also improved for the native oxide-SiNx passivated cells owing to the improved transport properties. The i-aSi:H-SiNx passivated cells exhibited optimum cell performance of 10.9% efficiency with VOC of 598.7 mV, JSC of 34.3 mA/cm2 and fill-factor of 0.531. In contrast, a maximum cell efficiency of 16% is obtained for native oxide-SiNx passivated cells with VOC of 651 mV, JSC of 35.4 mA/cm2 and fill-factor of 0.694 for a 1 cm2 untextured cell (all measurements having been performed under AM 1.5 global spectrum illumination). The above untextured cell performance is a record efficiency for a back amorphous-crystalline silicon heterojunction PV device synthesized using all low temperature processes, exceeding the previously reported highest cell efficiency of ~15%.","PeriodicalId":6318,"journal":{"name":"2012 38th IEEE Photovoltaic Specialists Conference","volume":"7 1","pages":"001026-001028"},"PeriodicalIF":0.0000,"publicationDate":"2012-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 38th IEEE Photovoltaic Specialists Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2012.6317777","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7
Abstract
Low temperature processing of silicon photovoltaic (PV) solar cells with excellent passivation quality enables the effective use of ultra-thin wafers for solar cell manufacturing, thus paving the way for high-efficiency low-cost silicon photovoltaics. This article presents Back Amorphous-Crystalline Silicon Heterojunction (BACH) cell performance using low temperature (<;= 400°C) facile native oxide-PECVD silicon nitride (SiNx) dual layer passivation scheme. The cell performance is also compared with the BACH cells fabricated using intrinsic hydrogenated amorphous silicon (i-aSi:H) and PECVD SiNx layer passivation. Reduced optical absorption in the native oxide-SiNx passivation layer resulted in a higher short-circuit current, JSC, compared to the i-aSi:H-SiNx passivated cells. The fill-factor also improved for the native oxide-SiNx passivated cells owing to the improved transport properties. The i-aSi:H-SiNx passivated cells exhibited optimum cell performance of 10.9% efficiency with VOC of 598.7 mV, JSC of 34.3 mA/cm2 and fill-factor of 0.531. In contrast, a maximum cell efficiency of 16% is obtained for native oxide-SiNx passivated cells with VOC of 651 mV, JSC of 35.4 mA/cm2 and fill-factor of 0.694 for a 1 cm2 untextured cell (all measurements having been performed under AM 1.5 global spectrum illumination). The above untextured cell performance is a record efficiency for a back amorphous-crystalline silicon heterojunction PV device synthesized using all low temperature processes, exceeding the previously reported highest cell efficiency of ~15%.