Microstructure Engineering of Al Doped SrTiO3/TiO2 Heterostructure Nanorod Arrays Boosting Piezo‐Photocatalytic Performances

Xian-Ming Chu, Xiaoqi Jiang, Hui Zhang, Cheng Wang, F. Huang, Xiaoyu Sun, Shikuo Li
{"title":"Microstructure Engineering of Al Doped SrTiO3/TiO2 Heterostructure Nanorod Arrays Boosting Piezo‐Photocatalytic Performances","authors":"Xian-Ming Chu, Xiaoqi Jiang, Hui Zhang, Cheng Wang, F. Huang, Xiaoyu Sun, Shikuo Li","doi":"10.1002/admt.202200390","DOIUrl":null,"url":null,"abstract":"Modulating the charge‐transfer pathway is of great significance for boosting the photocatalytic efficiency of the catalysts. Herein, well‐ordered Al doping SrTiO3/TiO2 heterojunction nanorod arrays (Al‐STO/TiO2 HNRAs) via a two‐step hydrothermal protocol for efficient piezo‐photocatalysis are reported. The piezoelectric field generated by the internal polarization of Al‐STO/TiO2 HNRAs can be tailored by Al doping content, which could help to modulate the migration and separation of charge carriers. The doping of Al also makes the charge lifetime from 1.14 ns increased to 1.76 ns. Under the co‐excitation of ultrasonic and ultraviolet irradiation, the oxidation rate constant of Al‐STO/TiO2 HNRAs can reach 0.037 min−1 for the degradation of Rhodamine B molecules, which was 3.42 times higher than that of the un‐doping sample. The piezo‐potential distribution and charge migration within Al‐STO/TiO2 HNRAs were explored by piezoelectric force microscopy and COMSOL simulation. This work provides a promising solution toward modulating charge carrier migration for boosting photocatalytic activities with the assistance of mechanic vibration.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"14 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202200390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Modulating the charge‐transfer pathway is of great significance for boosting the photocatalytic efficiency of the catalysts. Herein, well‐ordered Al doping SrTiO3/TiO2 heterojunction nanorod arrays (Al‐STO/TiO2 HNRAs) via a two‐step hydrothermal protocol for efficient piezo‐photocatalysis are reported. The piezoelectric field generated by the internal polarization of Al‐STO/TiO2 HNRAs can be tailored by Al doping content, which could help to modulate the migration and separation of charge carriers. The doping of Al also makes the charge lifetime from 1.14 ns increased to 1.76 ns. Under the co‐excitation of ultrasonic and ultraviolet irradiation, the oxidation rate constant of Al‐STO/TiO2 HNRAs can reach 0.037 min−1 for the degradation of Rhodamine B molecules, which was 3.42 times higher than that of the un‐doping sample. The piezo‐potential distribution and charge migration within Al‐STO/TiO2 HNRAs were explored by piezoelectric force microscopy and COMSOL simulation. This work provides a promising solution toward modulating charge carrier migration for boosting photocatalytic activities with the assistance of mechanic vibration.
Al掺杂SrTiO3/TiO2异质结构纳米棒阵列提高压电光催化性能的微结构工程
调节电荷转移途径对提高催化剂的光催化效率具有重要意义。本文报道了有序的Al掺杂SrTiO3/TiO2异质结纳米棒阵列(Al - STO/TiO2 HNRAs)通过两步水热方案用于高效的压电光催化。Al‐STO/TiO2 HNRAs内部极化产生的压电场可以根据Al掺杂量进行调整,这有助于调节载流子的迁移和分离。Al的掺入也使电荷寿命从1.14 ns增加到1.76 ns。在超声和紫外共激发下,Al - STO/TiO2 HNRAs降解罗丹明B分子的氧化速率常数可达0.037 min−1,是未掺杂样品的3.42倍。利用压电力显微镜和COMSOL模拟研究了Al - STO/TiO2 HNRAs内部的压电电位分布和电荷迁移。这项工作为利用机械振动来调节载流子迁移以提高光催化活性提供了一个有希望的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信