New families of star-supermagic graphs

A. Ngurah
{"title":"New families of star-supermagic graphs","authors":"A. Ngurah","doi":"10.19184/IJC.2020.4.2.4","DOIUrl":null,"url":null,"abstract":"A simple graph <em>G</em> admits a <em>K</em><sub>1,n</sub>-covering if every edge in <em>E</em>(<em>G</em>) belongs to a subgraph of <em>G</em> isomorphic to <em>K</em><sub>1,n</sub>. The graph <em>G</em> is <em>K</em><sub>1,n</sub>-supermagic if there exists  a bijection <em>f</em> : <em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>) → {1, 2, 3,..., |<em>V</em>(<em>G</em>) ∪ <em>E</em>(<em>G</em>)|} such that for every subgraph <em>H</em>' of <em>G</em> isomorphic to <em>K</em><sub>1,n</sub>,  ∑v<sub> ∈ V(H') </sub> f(v) + ∑<sub>e ∈ E(H')</sub> f(e) is  a constant and <em>f</em>(<em>V</em>(<em>G</em>)) = {1, 2, 3,..., |<em>V</em>(<em>G</em>)|}. In such a case, <em>f</em> is called a <em>K</em><sub>1,n</sub>-supermagic labeling of <em>G</em>.  In this paper, we give a method how to construct <em>K</em><sub>1,n</sub>-supermagic graphs from the old ones.","PeriodicalId":13506,"journal":{"name":"Indonesian Journal of Combinatorics","volume":"34 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Combinatorics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.19184/IJC.2020.4.2.4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A simple graph G admits a K1,n-covering if every edge in E(G) belongs to a subgraph of G isomorphic to K1,n. The graph G is K1,n-supermagic if there exists  a bijection f : V(G) ∪ E(G) → {1, 2, 3,..., |V(G) ∪ E(G)|} such that for every subgraph H' of G isomorphic to K1,n,  ∑v ∈ V(H')  f(v) + ∑e ∈ E(H') f(e) is  a constant and f(V(G)) = {1, 2, 3,..., |V(G)|}. In such a case, f is called a K1,n-supermagic labeling of G.  In this paper, we give a method how to construct K1,n-supermagic graphs from the old ones.
星-超幻图的新族
如果E(G)中的每条边都属于G同构于K1,n的子图,则简单图G允许K1,n覆盖。图G是K1,n-超幻,如果存在一个双射f: V(G)∪E(G)→{1,2,3,…| V (G)∪E (G) |}例如对于每个子图H的G的同构K1, n,∑V∈(H) f (V) +∑E∈f E (H) (E)是一个常数和f (V (G)) ={1, 2, 3,…| V (G) |}。在这种情况下,f称为g的K1,n-超幻标记。本文给出了一种由旧图构造K1,n-超幻图的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信