On Types of Elliptic Pseudoprimes

IF 0.1 Q4 MATHEMATICS
L. Babinkostova, A. Hern'andez-Espiet, H. Kim
{"title":"On Types of Elliptic Pseudoprimes","authors":"L. Babinkostova, A. Hern'andez-Espiet, H. Kim","doi":"10.46298/jgcc.2021.13.1.6521","DOIUrl":null,"url":null,"abstract":"We generalize the notions of elliptic pseudoprimes and elliptic Carmichael\nnumbers introduced by Silverman to analogues of Euler-Jacobi and strong\npseudoprimes. We investigate the relationships among Euler Elliptic Carmichael\nnumbers , strong elliptic Carmichael numbers, products of anomalous primes and\nelliptic Korselt numbers of Type I: The former two of these are introduced in\nthis paper, and the latter two of these were introduced by Mazur (1973) and\nSilverman (2012) respectively. In particular, we expand upon a previous work of\nBabinkostova et al. by proving a conjecture about the density of certain\nelliptic Korselt numbers of Type I that are products of anomalous primes.\nComment: Revised for publication. 33 pages","PeriodicalId":41862,"journal":{"name":"Groups Complexity Cryptology","volume":"21 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2017-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Groups Complexity Cryptology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/jgcc.2021.13.1.6521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We generalize the notions of elliptic pseudoprimes and elliptic Carmichael numbers introduced by Silverman to analogues of Euler-Jacobi and strong pseudoprimes. We investigate the relationships among Euler Elliptic Carmichael numbers , strong elliptic Carmichael numbers, products of anomalous primes and elliptic Korselt numbers of Type I: The former two of these are introduced in this paper, and the latter two of these were introduced by Mazur (1973) and Silverman (2012) respectively. In particular, we expand upon a previous work of Babinkostova et al. by proving a conjecture about the density of certain elliptic Korselt numbers of Type I that are products of anomalous primes. Comment: Revised for publication. 33 pages
关于椭圆型伪素数的类型
将Silverman引入的椭圆伪素数和椭圆carmichael数的概念推广到类似的欧拉-雅可比和强伪素数。本文研究了欧拉椭圆carmichael数、强椭圆carmichael数、反常素数积和I型椭圆Korselt数之间的关系:本文介绍了前两种关系,后两种关系分别由Mazur(1973)和silverman(2012)介绍。特别地,我们扩展了babinkostova等人先前的工作,证明了一类椭圆Korselt数的密度猜想,这些椭圆Korselt数是反常素数的乘积。备注:修改后发布。33页
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信