{"title":"Contrasting Patterns of Genome Size Diversity in Island Endemic Artemisia (Asteraceae)","authors":"J. Pellicer, Pol Fernández","doi":"10.1086/724309","DOIUrl":null,"url":null,"abstract":"Premise of research. Genome size has cascading effects at nuclear, cell, and whole-organism levels, with consequences in the biology of the species. Large genomes impose higher metabolic and energetic costs, which might be exceedingly limiting for species to thrive under stressing environments, such as island archipelagos. Methodology. We mined online databases to collate available data on chromosome numbers and genome sizes in the genus Artemisia, which colonized Macaronesia and Hawaii archipelagos. We applied phylogenetic-based modeling approaches to reconstruct the evolution of these two traits to estimate ancestral states as well as the main mechanisms of change. Pivotal results. On the basis of extant chromosome data, our analyses discard polyploidy as a likely mechanism for speciation in Macaronesia or Hawaii. However, contrasting genome size patterns are found. Hawaiian endemics account for the smallest genomes in Artemisia, while those of Macaronesian endemics fall well above the average size in the genus. Conclusions. The evidence gathered in Artemisia indicates that, rather than genome downsizing, the presence of small genomes most likely predated colonization of Hawaii, which could have been key for a long dispersal from an Asian ancestor. Such a pattern does not hold in Macaronesia, which is relatively closer to mainland compared with Hawaii, hence suggesting that geographical isolation might reduce the likelihood of a large-genomed taxon to successfully colonize remote island archipelagos.","PeriodicalId":14306,"journal":{"name":"INTERNATIONAL JOURNAL OF PLANT SCIENCES","volume":"2 1","pages":"342 - 349"},"PeriodicalIF":1.5000,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"INTERNATIONAL JOURNAL OF PLANT SCIENCES","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1086/724309","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Premise of research. Genome size has cascading effects at nuclear, cell, and whole-organism levels, with consequences in the biology of the species. Large genomes impose higher metabolic and energetic costs, which might be exceedingly limiting for species to thrive under stressing environments, such as island archipelagos. Methodology. We mined online databases to collate available data on chromosome numbers and genome sizes in the genus Artemisia, which colonized Macaronesia and Hawaii archipelagos. We applied phylogenetic-based modeling approaches to reconstruct the evolution of these two traits to estimate ancestral states as well as the main mechanisms of change. Pivotal results. On the basis of extant chromosome data, our analyses discard polyploidy as a likely mechanism for speciation in Macaronesia or Hawaii. However, contrasting genome size patterns are found. Hawaiian endemics account for the smallest genomes in Artemisia, while those of Macaronesian endemics fall well above the average size in the genus. Conclusions. The evidence gathered in Artemisia indicates that, rather than genome downsizing, the presence of small genomes most likely predated colonization of Hawaii, which could have been key for a long dispersal from an Asian ancestor. Such a pattern does not hold in Macaronesia, which is relatively closer to mainland compared with Hawaii, hence suggesting that geographical isolation might reduce the likelihood of a large-genomed taxon to successfully colonize remote island archipelagos.
期刊介绍:
The International Journal of Plant Sciences has a distinguished history of publishing research in the plant sciences since 1875. IJPS presents high quality, original, peer-reviewed research from laboratories around the world in all areas of the plant sciences. Topics covered range from genetics and genomics, developmental and cell biology, biochemistry and physiology, to morphology and anatomy, systematics, evolution, paleobotany, plant-microbe interactions, and ecology. IJPS does NOT publish papers on agriculture or crop improvement. In addition to full-length research papers, IJPS publishes review articles, including the open access Coulter Reviews, rapid communications, and perspectives. IJPS welcomes contributions that present evaluations and new perspectives on areas of current interest in plant biology. IJPS publishes nine issues per year and regularly features special issues on topics of particular interest, including new and exciting research originally presented at major botanical conferences.