Classifiying advanced concepts to assess device requirements for high efficiency solar cells

Andreas Pusch, N. Ekins‐Daukes
{"title":"Classifiying advanced concepts to assess device requirements for high efficiency solar cells","authors":"Andreas Pusch, N. Ekins‐Daukes","doi":"10.1109/NUSOD52207.2021.9541417","DOIUrl":null,"url":null,"abstract":"The efficiency of terrestrial solar energy conversion is fundamentally limited by the Landsberg limit of 93%. Single junction solar cells can, however, reach only about a third of this efficiency, a limitation first formulated by Shockley and Queisser [1] . Many concepts have been proposed to overcome this Shockley-Queisser (SQ) limit for single junction solar cells. In this contribution, we are going to explore the classification of these concepts according to the processes that occur in them and explain how this affects model-building for these devices and the requirements they have to fulfil.","PeriodicalId":6780,"journal":{"name":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","volume":"12 1","pages":"49-50"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD52207.2021.9541417","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The efficiency of terrestrial solar energy conversion is fundamentally limited by the Landsberg limit of 93%. Single junction solar cells can, however, reach only about a third of this efficiency, a limitation first formulated by Shockley and Queisser [1] . Many concepts have been proposed to overcome this Shockley-Queisser (SQ) limit for single junction solar cells. In this contribution, we are going to explore the classification of these concepts according to the processes that occur in them and explain how this affects model-building for these devices and the requirements they have to fulfil.
对先进概念进行分类,以评估高效太阳能电池的设备要求
地面太阳能转换效率基本上受限于93%的Landsberg极限。然而,单结太阳能电池只能达到这种效率的三分之一左右,这是由Shockley和Queisser[1]首先提出的限制。为了克服单结太阳能电池的这种Shockley-Queisser (SQ)极限,已经提出了许多概念。在这篇文章中,我们将根据这些概念中发生的过程来探索这些概念的分类,并解释这如何影响这些设备的模型构建以及它们必须满足的要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信