Geometry of concircular curvature tensor of Nearly Kahler manifold

{"title":"Geometry of concircular curvature tensor of Nearly Kahler manifold","authors":"","doi":"10.25130/tjps.v20i4.1226","DOIUrl":null,"url":null,"abstract":"In this paper, we study the necessary condition where a nearly Kahler manifold of flat concircular tensor has been found.  And the relationship between these invariants and additional properties of symmetry concircular tensor, as well as geometrical sense of the reference (manipulation) in zero of these invariants are studied. \nLet M - smooth manifold of dimension 2n;  - algebra of smooth functions on M;  - the module of smooth vector fields on manifold of M; g = <·, > - Riemannian metrics; Ñ – Riemannian connection of the metrics g on M; d - the operator of exterior differentiation. In the  further all manifold, Tensor fields, etc. objects are assumed smooth a class .","PeriodicalId":23142,"journal":{"name":"Tikrit Journal of Pure Science","volume":"33 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tikrit Journal of Pure Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.25130/tjps.v20i4.1226","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we study the necessary condition where a nearly Kahler manifold of flat concircular tensor has been found.  And the relationship between these invariants and additional properties of symmetry concircular tensor, as well as geometrical sense of the reference (manipulation) in zero of these invariants are studied. Let M - smooth manifold of dimension 2n;  - algebra of smooth functions on M;  - the module of smooth vector fields on manifold of M; g = <·, > - Riemannian metrics; Ñ – Riemannian connection of the metrics g on M; d - the operator of exterior differentiation. In the  further all manifold, Tensor fields, etc. objects are assumed smooth a class .
近Kahler流形共圆曲率张量的几何
本文研究了平面共圆张量的近Kahler流形存在的必要条件。研究了这些不变量与对称共圆张量附加性质之间的关系,以及这些不变量的零点参照(操纵)的几何意义。设M - 2n维光滑流形;- M上光滑函数的代数;- M流形上光滑向量场的模;g = -黎曼度量;Ñ - M上度量g的黎曼连接;D -外微分算子。进一步,所有流形、张量场等对象都假定为光滑类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信