A Traitor Tracking Method Towards Deep Learning Models in Cloud Environments

IF 0.6 Q4 COMPUTER SCIENCE, THEORY & METHODS
Yu Zhang, Linfeng Wei, Hailiang Li, Hexin Cai, Ying Wu
{"title":"A Traitor Tracking Method Towards Deep Learning Models in Cloud Environments","authors":"Yu Zhang, Linfeng Wei, Hailiang Li, Hexin Cai, Ying Wu","doi":"10.4018/ijghpc.301588","DOIUrl":null,"url":null,"abstract":"Cloud computing can speed up the training process of deep learning models. In this process, training data and model parameters stored in the cloud are prone to threats of being stolen. In model protection, model watermarking is a commonly used method. Using the adversarial example as model watermarking can make watermarked images have better concealment. Oriented from the signature mechanism in cryptography, a signature-based scheme is proposed to guarantee the performance of deep learning algorithms via identifying these adversarial examples. In the adversarial example generation stage, the corresponding signature information and classification information will be embedded in the noise space, so that the generated adversarial example will have implicit identity information, which can be verified by the secret key. The experiment using the ImageNet dataset shows that the adversarial examples generated by the authors’ scheme must be correctly recognized by the classifier with the secret key.","PeriodicalId":43565,"journal":{"name":"International Journal of Grid and High Performance Computing","volume":"30 1","pages":"1-17"},"PeriodicalIF":0.6000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Grid and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/ijghpc.301588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Cloud computing can speed up the training process of deep learning models. In this process, training data and model parameters stored in the cloud are prone to threats of being stolen. In model protection, model watermarking is a commonly used method. Using the adversarial example as model watermarking can make watermarked images have better concealment. Oriented from the signature mechanism in cryptography, a signature-based scheme is proposed to guarantee the performance of deep learning algorithms via identifying these adversarial examples. In the adversarial example generation stage, the corresponding signature information and classification information will be embedded in the noise space, so that the generated adversarial example will have implicit identity information, which can be verified by the secret key. The experiment using the ImageNet dataset shows that the adversarial examples generated by the authors’ scheme must be correctly recognized by the classifier with the secret key.
面向云环境下深度学习模型的叛逆者跟踪方法
云计算可以加快深度学习模型的训练过程。在这个过程中,存储在云端的训练数据和模型参数容易受到被盗的威胁。在模型保护中,模型水印是一种常用的方法。采用对抗样例作为模型水印可以使水印图像具有更好的隐蔽性。从密码学中的签名机制出发,提出了一种基于签名的方案,通过识别这些对抗性示例来保证深度学习算法的性能。在对抗示例生成阶段,将相应的签名信息和分类信息嵌入到噪声空间中,使生成的对抗示例具有隐式身份信息,可通过密钥进行验证。使用ImageNet数据集的实验表明,使用密钥的分类器必须正确识别由作者的方案生成的对抗示例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.70
自引率
10.00%
发文量
24
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信