Constructive existence results for solutions to systems of boundary value problems via general Lyapunov methods

J. Henderson, Q. Sheng, C. Tisdell
{"title":"Constructive existence results for solutions to systems of boundary value problems via general Lyapunov methods","authors":"J. Henderson, Q. Sheng, C. Tisdell","doi":"10.7153/DEA-09-05","DOIUrl":null,"url":null,"abstract":"In this work we consider boundary value problems (BVPs) for systems of secondorder, ordinary differential equations. A priori bounds on solutions are obtained via differential inequalities involving general Lyapunov functions without the need for maximum principles. These bounds are then applied to produce new existence theorems via topological methods. Some constructive results are also developed via A-proper mappings and the Galerkin method, in which solutions to the BVP may be approximated. Mathematics subject classification (2010): 34B15.","PeriodicalId":11162,"journal":{"name":"Differential Equations and Applications","volume":"11 1","pages":"57-68"},"PeriodicalIF":0.0000,"publicationDate":"2017-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.7153/DEA-09-05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this work we consider boundary value problems (BVPs) for systems of secondorder, ordinary differential equations. A priori bounds on solutions are obtained via differential inequalities involving general Lyapunov functions without the need for maximum principles. These bounds are then applied to produce new existence theorems via topological methods. Some constructive results are also developed via A-proper mappings and the Galerkin method, in which solutions to the BVP may be approximated. Mathematics subject classification (2010): 34B15.
用一般李雅普诺夫方法求边值问题系统解的构造存在性结果
在这项工作中,我们考虑二阶常微分方程系统的边值问题。通过涉及一般李雅普诺夫函数的微分不等式得到了解的先验界,而不需要极大值原理。然后通过拓扑方法将这些边界应用于产生新的存在性定理。通过a -固有映射和伽辽金方法得到了一些建设性的结果,其中BVP的解可以近似。数学学科分类(2010):34B15。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信