Limit Theorems for Super-heavy Tailed Random Variables with Truncation: Application to the Super-petersburg Game

IF 0.1 Q4 MATHEMATICS
Toshio Nakata
{"title":"Limit Theorems for Super-heavy Tailed Random Variables with Truncation: Application to the Super-petersburg Game","authors":"Toshio Nakata","doi":"10.21915/bimas.2020202","DOIUrl":null,"url":null,"abstract":"Motivated by the super-Petersburg game, we consider the super-heavy tailed independent and identically distributed (iid) random variables whose tail are characterized by slow variation. This article explores strong laws of large numbers and central limit theorems for a class of super-heavy tailed random variables with two types of truncations, respectively. We apply our results to the logPareto distributions and the super-Petersburg distributions.","PeriodicalId":43960,"journal":{"name":"Bulletin of the Institute of Mathematics Academia Sinica New Series","volume":"9 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2020-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Institute of Mathematics Academia Sinica New Series","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21915/bimas.2020202","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

Motivated by the super-Petersburg game, we consider the super-heavy tailed independent and identically distributed (iid) random variables whose tail are characterized by slow variation. This article explores strong laws of large numbers and central limit theorems for a class of super-heavy tailed random variables with two types of truncations, respectively. We apply our results to the logPareto distributions and the super-Petersburg distributions.
具有截断的超重尾随机变量的极限定理:在超级彼得斯堡对策中的应用
在超级彼得斯堡博弈的激励下,我们考虑了尾巴变化缓慢的超重尾独立同分布(iid)随机变量。本文分别探讨了一类具有两种截断类型的超重尾随机变量的强大数定律和中心极限定理。我们将结果应用于logPareto分布和super-Petersburg分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
50.00%
发文量
14
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信