Liyakathunisa, A. Alsaeedi, S. Jabeen, H. Kolivand
{"title":"Ambient assisted living framework for elderly care using Internet of medical things, smart sensors, and GRU deep learning techniques","authors":"Liyakathunisa, A. Alsaeedi, S. Jabeen, H. Kolivand","doi":"10.3233/ais-210162","DOIUrl":null,"url":null,"abstract":"Due to the increase in the global aging population and its associated age-related challenges, various cognitive, physical, and social problems can arise in older adults, such as reduced walking speed, mobility, falls, fatigue, difficulties in performing daily activities, memory-related and social isolation issues. In turn, there is a need for continuous supervision, intervention, assistance, and care for elderly people for active and healthy aging. This research proposes an ambient assisted living system with the Internet of Medical Things that leverages deep learning techniques to monitor and evaluate the elderly activities and vital signs for clinical decision support. The novelty of the proposed approach is that bidirectional Gated Recurrent Unit, and Gated Recurrent Unit deep learning techniques with mutual information-based feature selection technique is applied to select robust features to identify the target activities and abnormalities. Experiments were conducted on two datasets (the recorded Ambient Assisted Living data and MHealth benchmark data) with bidirectional Gated Recurrent Unit, and Gated Recurrent Unit deep learning techniques and compared with other state of art techniques. Different evaluation metrics were used to assess the performance, findings reveal that bidirectional Gated Recurrent Unit deep learning techniques outperform other state of art approaches with an accuracy of 98.14% for Ambient Assisted Living data, and 99.26% for MHealth data using the proposed approach.","PeriodicalId":49316,"journal":{"name":"Journal of Ambient Intelligence and Smart Environments","volume":"175 1","pages":"5-23"},"PeriodicalIF":1.8000,"publicationDate":"2021-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ambient Intelligence and Smart Environments","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ais-210162","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 2
Abstract
Due to the increase in the global aging population and its associated age-related challenges, various cognitive, physical, and social problems can arise in older adults, such as reduced walking speed, mobility, falls, fatigue, difficulties in performing daily activities, memory-related and social isolation issues. In turn, there is a need for continuous supervision, intervention, assistance, and care for elderly people for active and healthy aging. This research proposes an ambient assisted living system with the Internet of Medical Things that leverages deep learning techniques to monitor and evaluate the elderly activities and vital signs for clinical decision support. The novelty of the proposed approach is that bidirectional Gated Recurrent Unit, and Gated Recurrent Unit deep learning techniques with mutual information-based feature selection technique is applied to select robust features to identify the target activities and abnormalities. Experiments were conducted on two datasets (the recorded Ambient Assisted Living data and MHealth benchmark data) with bidirectional Gated Recurrent Unit, and Gated Recurrent Unit deep learning techniques and compared with other state of art techniques. Different evaluation metrics were used to assess the performance, findings reveal that bidirectional Gated Recurrent Unit deep learning techniques outperform other state of art approaches with an accuracy of 98.14% for Ambient Assisted Living data, and 99.26% for MHealth data using the proposed approach.
期刊介绍:
The Journal of Ambient Intelligence and Smart Environments (JAISE) serves as a forum to discuss the latest developments on Ambient Intelligence (AmI) and Smart Environments (SmE). Given the multi-disciplinary nature of the areas involved, the journal aims to promote participation from several different communities covering topics ranging from enabling technologies such as multi-modal sensing and vision processing, to algorithmic aspects in interpretive and reasoning domains, to application-oriented efforts in human-centered services, as well as contributions from the fields of robotics, networking, HCI, mobile, collaborative and pervasive computing. This diversity stems from the fact that smart environments can be defined with a variety of different characteristics based on the applications they serve, their interaction models with humans, the practical system design aspects, as well as the multi-faceted conceptual and algorithmic considerations that would enable them to operate seamlessly and unobtrusively. The Journal of Ambient Intelligence and Smart Environments will focus on both the technical and application aspects of these.