Environmentally sustainable zinc oxide nanoparticles for improved hazardous textile dye removal from water bodies

IF 2.1 4区 环境科学与生态学 Q2 ENGINEERING, CIVIL
Jaya Gangwar, Akshay Pratap Singh, Nidhin Marimuthu, Joseph Kadanthottu Sebastian
{"title":"Environmentally sustainable zinc oxide nanoparticles for improved hazardous textile dye removal from water bodies","authors":"Jaya Gangwar, Akshay Pratap Singh, Nidhin Marimuthu, Joseph Kadanthottu Sebastian","doi":"10.2166/aqua.2023.023","DOIUrl":null,"url":null,"abstract":"\n \n A sustainable, affordable, and cost-effective method was developed to synthesize zinc oxide nanoparticles (SB-ZnO-NPs) using leaf extracts of Strobilanthes barbatus. The synthesized SB-ZnO-NPs displayed an absorbance maximum at 359 nm with a band gap of 3.24 eV. The average diameter of the SB-ZnO-NPs, as determined by FESEM analysis, was 84.23 nm. The particles had nearly spherical morphologies. By using FTIR analysis, it was established that functional groups played a part in the formation of SB-ZnO-NPs. Reactive Yellow 86 (RY-86) and Reactive Yellow 145 (RY-145) textile dyes were degraded by SB-ZnO-NPs under the impact of UV irradiation, and the degradation rates were 87.50 and 91.11%, respectively, in 320 min. When dye solutions treated with SB-ZnO-NPs were tested for phytotoxicity, the results showed a sharp decline in the effectiveness of the inhibition compared to dye effluents. The synthesised SB-ZnO-NPs can, therefore, be employed as a substitute potential catalyst for the breakdown of textile colours both before and after release into water bodies.","PeriodicalId":34693,"journal":{"name":"AQUA-Water Infrastructure Ecosystems and Society","volume":null,"pages":null},"PeriodicalIF":2.1000,"publicationDate":"2023-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AQUA-Water Infrastructure Ecosystems and Society","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.2166/aqua.2023.023","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

A sustainable, affordable, and cost-effective method was developed to synthesize zinc oxide nanoparticles (SB-ZnO-NPs) using leaf extracts of Strobilanthes barbatus. The synthesized SB-ZnO-NPs displayed an absorbance maximum at 359 nm with a band gap of 3.24 eV. The average diameter of the SB-ZnO-NPs, as determined by FESEM analysis, was 84.23 nm. The particles had nearly spherical morphologies. By using FTIR analysis, it was established that functional groups played a part in the formation of SB-ZnO-NPs. Reactive Yellow 86 (RY-86) and Reactive Yellow 145 (RY-145) textile dyes were degraded by SB-ZnO-NPs under the impact of UV irradiation, and the degradation rates were 87.50 and 91.11%, respectively, in 320 min. When dye solutions treated with SB-ZnO-NPs were tested for phytotoxicity, the results showed a sharp decline in the effectiveness of the inhibition compared to dye effluents. The synthesised SB-ZnO-NPs can, therefore, be employed as a substitute potential catalyst for the breakdown of textile colours both before and after release into water bodies.
环境可持续的氧化锌纳米颗粒用于改善水体中有害纺织染料的去除
研究了一种可持续、经济、高性价比的以桔黄叶提取物为原料合成氧化锌纳米颗粒(SB-ZnO-NPs)的方法。合成的SB-ZnO-NPs在359 nm处吸光度最大,带隙为3.24 eV。FESEM测定SB-ZnO-NPs的平均直径为84.23 nm。颗粒具有接近球形的形态。通过FTIR分析,确定了官能团参与了SB-ZnO-NPs的形成。在紫外照射下,SB-ZnO-NPs对活性黄86 (RY-86)和活性黄145 (RY-145)两种纺织染料的降解率分别为87.50%和91.11%,降解时间为320 min。当对经SB-ZnO-NPs处理的染料溶液进行植物毒性测试时,结果表明,与染料废水相比,抑制效果明显下降。因此,合成的SB-ZnO-NPs可以作为纺织品颜色在释放到水体之前和之后分解的替代潜在催化剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.10
自引率
21.10%
发文量
0
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信