Information overload and online collaborative learning: insights from agent-based modeling

Shimin Zhang
{"title":"Information overload and online collaborative learning: insights from agent-based modeling","authors":"Shimin Zhang","doi":"10.1145/3231644.3231701","DOIUrl":null,"url":null,"abstract":"This paper investigates information overload (IO) in large online courses by developing an Agent-based Model (ABM) of student interaction in a computer-supported collaborative learning (CSCL) environment. Student surveys provided ABM model parameters, and experimental results suggest unique visitor count to be a superior metric than user activity level for IO detection. ABM of synchronous/asynchronous platforms demonstrates how additional channels can be introduced to effectively combat IO. As work in progress, we look forward to validating model recommendations with activity data in online classrooms.","PeriodicalId":20634,"journal":{"name":"Proceedings of the Fifth Annual ACM Conference on Learning at Scale","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Fifth Annual ACM Conference on Learning at Scale","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3231644.3231701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper investigates information overload (IO) in large online courses by developing an Agent-based Model (ABM) of student interaction in a computer-supported collaborative learning (CSCL) environment. Student surveys provided ABM model parameters, and experimental results suggest unique visitor count to be a superior metric than user activity level for IO detection. ABM of synchronous/asynchronous platforms demonstrates how additional channels can be introduced to effectively combat IO. As work in progress, we look forward to validating model recommendations with activity data in online classrooms.
信息过载和在线协作学习:来自基于代理的建模的见解
本文通过在计算机支持的协同学习(CSCL)环境中开发基于agent的学生交互模型(ABM),研究了大型在线课程中的信息过载(IO)问题。学生调查提供了ABM模型参数,实验结果表明,对于IO检测,唯一访问者计数是比用户活动水平更好的度量。同步/异步平台的ABM演示了如何引入额外的通道来有效地对抗IO。随着工作的进行,我们期待着通过在线课堂的活动数据来验证模型建议。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信