J. Aldrin, J. Wertz, J. Welter, E. Lindgren, N. Schehl, V. Kramb, David Zainey
{"title":"Pitch-Catch Ultrasonic Array Characterization of the Hidden Region of Impact Damage in Composites","authors":"J. Aldrin, J. Wertz, J. Welter, E. Lindgren, N. Schehl, V. Kramb, David Zainey","doi":"10.1080/09349847.2020.1847374","DOIUrl":null,"url":null,"abstract":"ABSTRACT This study explores the application of algorithms with linear array ultrasonic testing for the characterization of hidden regions of impact damage in composites. An idealized ray tracing model was used to demonstrate the sensitivity of transmitted signals to the hidden impact profile, and a numerical model was used to provide insight on the incident field generated by linear array elements. Experimental studies were performed highlighting the differences in the response from no flaw, columnar and trapezoidal profiles. Algorithms were implemented to process full matrix capture data, register pitch-catch signals with the top delamination location and extent, and improve the signal-to-noise through combining multiple pitch-catch acquisitions. Lastly, a classifier was developed and verification testing demonstrated the ability to distinguish four different hidden profiles, indicating the importance of signal registration for successful classification.","PeriodicalId":54493,"journal":{"name":"Research in Nondestructive Evaluation","volume":"17 1","pages":"275 - 289"},"PeriodicalIF":1.0000,"publicationDate":"2020-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Nondestructive Evaluation","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1080/09349847.2020.1847374","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
引用次数: 1
Abstract
ABSTRACT This study explores the application of algorithms with linear array ultrasonic testing for the characterization of hidden regions of impact damage in composites. An idealized ray tracing model was used to demonstrate the sensitivity of transmitted signals to the hidden impact profile, and a numerical model was used to provide insight on the incident field generated by linear array elements. Experimental studies were performed highlighting the differences in the response from no flaw, columnar and trapezoidal profiles. Algorithms were implemented to process full matrix capture data, register pitch-catch signals with the top delamination location and extent, and improve the signal-to-noise through combining multiple pitch-catch acquisitions. Lastly, a classifier was developed and verification testing demonstrated the ability to distinguish four different hidden profiles, indicating the importance of signal registration for successful classification.
期刊介绍:
Research in Nondestructive Evaluation® is the archival research journal of the American Society for Nondestructive Testing, Inc. RNDE® contains the results of original research in all areas of nondestructive evaluation (NDE). The journal covers experimental and theoretical investigations dealing with the scientific and engineering bases of NDE, its measurement and methodology, and a wide range of applications to materials and structures that relate to the entire life cycle, from manufacture to use and retirement.
Illustrative topics include advances in the underlying science of acoustic, thermal, electrical, magnetic, optical and ionizing radiation techniques and their applications to NDE problems. These problems include the nondestructive characterization of a wide variety of material properties and their degradation in service, nonintrusive sensors for monitoring manufacturing and materials processes, new techniques and combinations of techniques for detecting and characterizing hidden discontinuities and distributed damage in materials, standardization concepts and quantitative approaches for advanced NDE techniques, and long-term continuous monitoring of structures and assemblies. Of particular interest is research which elucidates how to evaluate the effects of imperfect material condition, as quantified by nondestructive measurement, on the functional performance.