High performance architecture for object detection in streamed video (abstract only)

P. Zemčík, Roman Juránek, Petr Musil, M. Musil, Michal Hradiš
{"title":"High performance architecture for object detection in streamed video (abstract only)","authors":"P. Zemčík, Roman Juránek, Petr Musil, M. Musil, Michal Hradiš","doi":"10.1145/2435264.2435319","DOIUrl":null,"url":null,"abstract":"Object detection is one of the key tasks in computer vision. It is computationally intensive and it is reasonable to accelerate it in hardware. The possible benefits of the acceleration are reduction of the computational load of the host computer system, increase of the overall performance of the applications, and reduction of the power consumption. We present novel architecture for multi-scale object detection in video streams. The architecture uses scanning window classifiers produced by WaldBoost learning algorithm, and simple image features. It employs small image buffer for data under processing, and on-the-fly scaling units to enable detection of object in multiple scales. The whole processing chain is pipelined and thus more image windows are processed in parallel. We implemented the engine in Spartan 6 FPGA and we show that it can process 640x480 pixel video streams at over 160 frames per second without the need of external memory. The design takes only a fraction of resources, compared to similar state of the art approaches.","PeriodicalId":87257,"journal":{"name":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","volume":"35 1","pages":"268"},"PeriodicalIF":0.0000,"publicationDate":"2013-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"FPGA. ACM International Symposium on Field-Programmable Gate Arrays","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2435264.2435319","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Object detection is one of the key tasks in computer vision. It is computationally intensive and it is reasonable to accelerate it in hardware. The possible benefits of the acceleration are reduction of the computational load of the host computer system, increase of the overall performance of the applications, and reduction of the power consumption. We present novel architecture for multi-scale object detection in video streams. The architecture uses scanning window classifiers produced by WaldBoost learning algorithm, and simple image features. It employs small image buffer for data under processing, and on-the-fly scaling units to enable detection of object in multiple scales. The whole processing chain is pipelined and thus more image windows are processed in parallel. We implemented the engine in Spartan 6 FPGA and we show that it can process 640x480 pixel video streams at over 160 frames per second without the need of external memory. The design takes only a fraction of resources, compared to similar state of the art approaches.
流视频中目标检测的高性能架构(仅抽象)
目标检测是计算机视觉中的关键任务之一。它是计算密集型的,在硬件上加速是合理的。加速可能带来的好处是减少主机系统的计算负荷,提高应用程序的整体性能,并降低功耗。提出了一种新的视频流中多尺度目标检测体系结构。该架构使用WaldBoost学习算法生成的扫描窗口分类器,并使用简单的图像特征。它采用小的图像缓冲区来处理数据,并使用实时缩放单元来实现多尺度对象的检测。整个处理链是流水线的,因此可以并行处理更多的图像窗口。我们在Spartan 6 FPGA上实现了该引擎,并证明它可以在不需要外部存储器的情况下以每秒160帧的速度处理640x480像素的视频流。与同类的先进方法相比,这种设计只需要一小部分资源。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信