Elaboration, synthesis and characterization by the viscosimetric study of chitosan materials in dimethyl sulfoxide hydrochloric acid

IF 1.2 4区 化学 Q4 CHEMISTRY, PHYSICAL
Wiem Ardhaoui, E. Cherif
{"title":"Elaboration, synthesis and characterization by the viscosimetric study of chitosan materials in dimethyl sulfoxide hydrochloric acid","authors":"Wiem Ardhaoui, E. Cherif","doi":"10.1080/00319104.2023.2249578","DOIUrl":null,"url":null,"abstract":"ABSTRACT The present work is concerned with experimental results of viscosimetric properties of materials biopolymer of chitosan solutions in HCl acid and dimethyl sulphoxide DMSO. The dynamic viscosity of solutions of Chitosan CH + DMSO/HCl over a wide range of concentrations (1 to 10) g/l and at different temperatures (293.15 to 318.15) K was measured. The reduced dynamic viscosity and the activation energy of reduced dynamic viscosity E η are calculated. Biopolymer solutions exhibit a critical concentration c*, separating the dilute solutions and semi-dilute solutions. The most important results refer to the activation energy of reduced dynamic viscosity found from Arrhenius plots. The dependence of the activation energy on solution concentration and temperature is discussed. The biopolymer CH behaviour can be extrapolated from the Flory-Huggins theory by decomposing such as E η = (E η ) di + (E η ) sdi  + (E η ) cri . The dilute solution behaviour of Arrhenius is described by the CH-DMSO/HCL interaction and represented by the function (E η ) di . For the semi-dilute solution behaviour of non-Arrhenius which is described by the interaction between the CH–CH and represented by the function (E η ) sdi . The critical solution behaviour is described by the interaction between the CH-CH-DMSO/HCl and represented by the function (E η ) cri .","PeriodicalId":20094,"journal":{"name":"Physics and Chemistry of Liquids","volume":"2 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics and Chemistry of Liquids","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1080/00319104.2023.2249578","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

ABSTRACT The present work is concerned with experimental results of viscosimetric properties of materials biopolymer of chitosan solutions in HCl acid and dimethyl sulphoxide DMSO. The dynamic viscosity of solutions of Chitosan CH + DMSO/HCl over a wide range of concentrations (1 to 10) g/l and at different temperatures (293.15 to 318.15) K was measured. The reduced dynamic viscosity and the activation energy of reduced dynamic viscosity E η are calculated. Biopolymer solutions exhibit a critical concentration c*, separating the dilute solutions and semi-dilute solutions. The most important results refer to the activation energy of reduced dynamic viscosity found from Arrhenius plots. The dependence of the activation energy on solution concentration and temperature is discussed. The biopolymer CH behaviour can be extrapolated from the Flory-Huggins theory by decomposing such as E η = (E η ) di + (E η ) sdi  + (E η ) cri . The dilute solution behaviour of Arrhenius is described by the CH-DMSO/HCL interaction and represented by the function (E η ) di . For the semi-dilute solution behaviour of non-Arrhenius which is described by the interaction between the CH–CH and represented by the function (E η ) sdi . The critical solution behaviour is described by the interaction between the CH-CH-DMSO/HCl and represented by the function (E η ) cri .
壳聚糖材料在二甲基亚砜盐酸中的制备、合成及粘度测定研究
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physics and Chemistry of Liquids
Physics and Chemistry of Liquids 化学-物理:凝聚态物理
CiteScore
3.30
自引率
8.30%
发文量
43
审稿时长
6-12 weeks
期刊介绍: Physics and Chemistry of Liquids publishes experimental and theoretical papers, letters and reviews aimed at furthering the understanding of the liquid state. The coverage embraces the whole spectrum of liquids, from simple monatomic liquids and their mixtures, through charged liquids (e.g. ionic melts, liquid metals and their alloys, ions in aqueous solution, and metal-electrolyte systems) to molecular liquids of all kinds. It also covers quantum fluids and superfluids, such as Fermi and non-Fermi liquids, superconductors, Bose-Einstein condensates, correlated electron or spin assemblies. By publishing papers on physical aspects of the liquid state as well as those with a mainly chemical focus, Physics and Chemistry of Liquids provides a medium for the publication of interdisciplinary papers on liquids serving its broad international readership of physicists and chemists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信