On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: Critical case

IF 0.5 Q3 MATHEMATICS
T. F. Sharapov
{"title":"On resolvent of multi-dimensional operators with frequent alternation of boundary conditions: Critical case","authors":"T. F. Sharapov","doi":"10.13108/2016-8-2-65","DOIUrl":null,"url":null,"abstract":"We consider an elliptic operator in a multi-dimensional domain with frequent alternation of Dirichlet and Robin conditions. We study the case, when the homogenized operator has Robin condition with an additional coefficient generated by the geometry of the alternation. We prove the norm resolvent convergence of the perturbed operator to the homogenized one and obtain the estimate for the convergence rate. We construct the complete asymptotic expansion for the resolvent in the case, when it acts on sufficiently smooth functions.","PeriodicalId":43644,"journal":{"name":"Ufa Mathematical Journal","volume":"7 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2016-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ufa Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.13108/2016-8-2-65","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 2

Abstract

We consider an elliptic operator in a multi-dimensional domain with frequent alternation of Dirichlet and Robin conditions. We study the case, when the homogenized operator has Robin condition with an additional coefficient generated by the geometry of the alternation. We prove the norm resolvent convergence of the perturbed operator to the homogenized one and obtain the estimate for the convergence rate. We construct the complete asymptotic expansion for the resolvent in the case, when it acts on sufficiently smooth functions.
边界条件频繁变换的多维算子的求解:临界情况
考虑了具有Dirichlet条件和Robin条件频繁交替的多维域上的椭圆算子。我们研究了当均质算子具有Robin条件时,由交替几何产生的附加系数。证明了扰动算子对齐化算子的范数可解收敛性,并给出了收敛速率的估计。当解作用于足够光滑的函数时,我们构造了解的完全渐近展开式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信