Answering FO+MOD Queries under Updates on Bounded Degree Databases

Christoph Berkholz, Jens Keppeler, Nicole Schweikardt
{"title":"Answering FO+MOD Queries under Updates on Bounded Degree Databases","authors":"Christoph Berkholz, Jens Keppeler, Nicole Schweikardt","doi":"10.1145/3232056","DOIUrl":null,"url":null,"abstract":"We investigate the query evaluation problem for fixed queries over fully dynamic databases, where tuples can be inserted or deleted. The task is to design a dynamic algorithm that immediately reports the new result of a fixed query after every database update. We consider queries in first-order logic (FO) and its extension with modulo-counting quantifiers (FO+MOD) and show that they can be efficiently evaluated under updates, provided that the dynamic database does not exceed a certain degree bound. In particular, we construct a data structure that allows us to answer a Boolean FO+MOD query and to compute the size of the result of a non-Boolean query within constant time after every database update. Furthermore, after every database update, we can update the data structure in constant time such that afterwards we are able to test within constant time for a given tuple whether or not it belongs to the query result, to enumerate all tuples in the new query result, and to enumerate the difference between the old and the new query result with constant delay between the output tuples. The preprocessing time needed to build the data structure is linear in the size of the database. Our results extend earlier work on the evaluation of first-order queries on static databases of bounded degree and rely on an effective Hanf normal form for FO+MOD recently obtained by Heimberg, Kuske, and Schweikardt (LICS 2016).","PeriodicalId":6983,"journal":{"name":"ACM Transactions on Database Systems (TODS)","volume":"28 1","pages":"1 - 32"},"PeriodicalIF":0.0000,"publicationDate":"2017-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Database Systems (TODS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3232056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

Abstract

We investigate the query evaluation problem for fixed queries over fully dynamic databases, where tuples can be inserted or deleted. The task is to design a dynamic algorithm that immediately reports the new result of a fixed query after every database update. We consider queries in first-order logic (FO) and its extension with modulo-counting quantifiers (FO+MOD) and show that they can be efficiently evaluated under updates, provided that the dynamic database does not exceed a certain degree bound. In particular, we construct a data structure that allows us to answer a Boolean FO+MOD query and to compute the size of the result of a non-Boolean query within constant time after every database update. Furthermore, after every database update, we can update the data structure in constant time such that afterwards we are able to test within constant time for a given tuple whether or not it belongs to the query result, to enumerate all tuples in the new query result, and to enumerate the difference between the old and the new query result with constant delay between the output tuples. The preprocessing time needed to build the data structure is linear in the size of the database. Our results extend earlier work on the evaluation of first-order queries on static databases of bounded degree and rely on an effective Hanf normal form for FO+MOD recently obtained by Heimberg, Kuske, and Schweikardt (LICS 2016).
回答在有限程度数据库更新下的FO+MOD查询
我们研究了全动态数据库上的固定查询的查询求值问题,其中元组可以插入或删除。任务是设计一个动态算法,在每次数据库更新后立即报告固定查询的新结果。我们考虑了一阶逻辑(FO)查询及其扩展中的模计数量词(FO+MOD),并证明了在动态数据库不超过一定程度界的情况下,它们可以有效地在更新下求值。特别是,我们构建了一个数据结构,使我们能够回答布尔FO+MOD查询,并在每次数据库更新后的恒定时间内计算非布尔查询的结果大小。此外,在每次数据库更新之后,我们可以在恒定时间内更新数据结构,以便之后我们能够在恒定时间内测试给定元组是否属于查询结果,枚举新查询结果中的所有元组,并在输出元组之间具有恒定延迟的情况下枚举新旧查询结果之间的差异。构建数据结构所需的预处理时间与数据库的大小成线性关系。我们的研究结果扩展了早期对有界度静态数据库一阶查询的评估工作,并依赖于最近由Heimberg、Kuske和Schweikardt (LICS 2016)获得的FO+MOD的有效汉夫范式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信