A Novel Application of Naive Bayes Classifier in Photovoltaic Energy Prediction

R. Bayindir, M. Yesilbudak, Medine Colak, N. Genç
{"title":"A Novel Application of Naive Bayes Classifier in Photovoltaic Energy Prediction","authors":"R. Bayindir, M. Yesilbudak, Medine Colak, N. Genç","doi":"10.1109/ICMLA.2017.0-108","DOIUrl":null,"url":null,"abstract":"Solar energy is one of the most affordable and clean renewable energy source in the world. Hence, the solar energy prediction is an inevitable requirement in order to get the maximum solar energy during the day time and to increase the efficiency of solar energy systems. For this purpose, this paper predicts the daily total energy generation of an installed photovoltaic system using the Naïve Bayes classifier. In the prediction process, one-year historical dataset including daily average temperature, daily total sunshine duration, daily total global solar radiation and daily total photovoltaic energy generation parameters are used as the categorical-valued attributes. By means of the Naïve Bayes application, the sensitivity and the accuracy measures are improved for the photovoltaic energy prediction and the effects of other solar attributes on the photovoltaic energy generation are evaluated.","PeriodicalId":6636,"journal":{"name":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","volume":"20 1","pages":"523-527"},"PeriodicalIF":0.0000,"publicationDate":"2017-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"29","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2017.0-108","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 29

Abstract

Solar energy is one of the most affordable and clean renewable energy source in the world. Hence, the solar energy prediction is an inevitable requirement in order to get the maximum solar energy during the day time and to increase the efficiency of solar energy systems. For this purpose, this paper predicts the daily total energy generation of an installed photovoltaic system using the Naïve Bayes classifier. In the prediction process, one-year historical dataset including daily average temperature, daily total sunshine duration, daily total global solar radiation and daily total photovoltaic energy generation parameters are used as the categorical-valued attributes. By means of the Naïve Bayes application, the sensitivity and the accuracy measures are improved for the photovoltaic energy prediction and the effects of other solar attributes on the photovoltaic energy generation are evaluated.
朴素贝叶斯分类器在光伏能量预测中的新应用
太阳能是世界上最经济、最清洁的可再生能源之一。因此,为了在白天获得最大的太阳能,提高太阳能系统的效率,对太阳能进行预测是必然的要求。为此,本文采用Naïve贝叶斯分类器对已安装光伏系统的日总发电量进行预测。在预测过程中,使用包括日平均气温、日总日照时数、日全球太阳总辐射和日光伏发电总量参数在内的一年历史数据作为分类值属性。通过Naïve贝叶斯应用,提高了光伏能源预测的灵敏度和准确性,并评价了其他太阳能属性对光伏发电的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信