Effects of Force-Torque and Tactile Haptic Modalities on Classifying the Success of Robot Manipulation Tasks

Yukyu Chan, Hungchen Yu, Rebecca P. Khurshid
{"title":"Effects of Force-Torque and Tactile Haptic Modalities on Classifying the Success of Robot Manipulation Tasks","authors":"Yukyu Chan, Hungchen Yu, Rebecca P. Khurshid","doi":"10.1109/WHC.2019.8816131","DOIUrl":null,"url":null,"abstract":"We investigate which haptic sensing modalities, or combination of haptic sensing modalities, best enable a robot to determine whether it successfully completed a manipulation task. In this paper, we consider haptic sensing modalities obtained from a wrist-mounted force-torque sensor and three types of fingertip sensors: a pair of FlexiForce force-sensing resistors, a pair of NumaTac sensors, and a pair of BioTac sensors. For each type of fingertip sensor, we simultaneously record force-torque and fingertip tactile data as the robot attempted to complete two manipulation tasks—a picking task and a scooping task—two-hundred times each. We leverage the resulting dataset to train and test a classification method using forty-one different haptic feature combinations, obtained from exhaustive combinations of individual modalities of the force-torque sensor and fingertip sensors. Our results show that the classification method’s ability to distinguish between successful and unsuccessful task attempts depends on both the type of manipulation task and the subset of haptic modalities used to train and test the classification method.","PeriodicalId":6702,"journal":{"name":"2019 IEEE World Haptics Conference (WHC)","volume":"59 1","pages":"586-591"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE World Haptics Conference (WHC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WHC.2019.8816131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

We investigate which haptic sensing modalities, or combination of haptic sensing modalities, best enable a robot to determine whether it successfully completed a manipulation task. In this paper, we consider haptic sensing modalities obtained from a wrist-mounted force-torque sensor and three types of fingertip sensors: a pair of FlexiForce force-sensing resistors, a pair of NumaTac sensors, and a pair of BioTac sensors. For each type of fingertip sensor, we simultaneously record force-torque and fingertip tactile data as the robot attempted to complete two manipulation tasks—a picking task and a scooping task—two-hundred times each. We leverage the resulting dataset to train and test a classification method using forty-one different haptic feature combinations, obtained from exhaustive combinations of individual modalities of the force-torque sensor and fingertip sensors. Our results show that the classification method’s ability to distinguish between successful and unsuccessful task attempts depends on both the type of manipulation task and the subset of haptic modalities used to train and test the classification method.
力-扭矩和触觉模式对机器人操作任务成功分类的影响
我们研究了哪种触觉感知模式,或触觉感知模式的组合,最好地使机器人确定它是否成功地完成了操作任务。在本文中,我们考虑了从手腕上安装的力扭矩传感器和三种类型的指尖传感器获得的触觉传感模式:一对FlexiForce力传感电阻,一对NumaTac传感器和一对BioTac传感器。对于每种类型的指尖传感器,我们在机器人试图完成两项操作任务(拾取任务和舀取任务)时同时记录力-扭矩和指尖触觉数据,每项操作任务分别进行200次。我们利用结果数据集来训练和测试一种分类方法,使用41种不同的触觉特征组合,从力-扭矩传感器和指尖传感器的各个模态的详尽组合中获得。我们的研究结果表明,分类方法区分成功和不成功的任务尝试的能力取决于操作任务的类型和用于训练和测试分类方法的触觉模式子集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信