MaOMFO: Many-objective moth flame optimizer using reference-point based non-dominated sorting mechanism for global optimization problems

IF 1.4 Q3 OPERATIONS RESEARCH & MANAGEMENT SCIENCE
M. Premkumar, Pradeep Jangir, R. Sowmya, L. Abualigah
{"title":"MaOMFO: Many-objective moth flame optimizer using reference-point based non-dominated sorting mechanism for global optimization problems","authors":"M. Premkumar, Pradeep Jangir, R. Sowmya, L. Abualigah","doi":"10.5267/j.dsl.2023.4.006","DOIUrl":null,"url":null,"abstract":"Many-objective optimization (MaO) deals with a large number of conflicting objectives in optimization problems to acquire a reliable set of appropriate non-dominated solutions near the true Pareto front, and for the same, a unique mechanism is essential. Numerous papers have reported multi-objective evolutionary algorithms to explain the absence of convergence and diversity variety in many-objective optimization problems. One of the most encouraging methodologies utilizes many reference points to segregate the solutions and guide the search procedure. The above-said methodology is integrated into the basic version of the Moth Flame Optimization (MFO) algorithm for the first time in this paper. The proposed Many-Objective Moth Flame Optimization (MaOMFO) utilizes a set of reference points progressively decided by the hunt procedure of the moth flame. It permits the calculation to combine with the Pareto front yet synchronize the decent variety of the Pareto front. MaOMFO is employed to solve a wide range of unconstrained and constrained benchmark functions and compared with other competitive algorithms, such as non-dominated sorting genetic algorithm, multi-objective evolutionary algorithm based on dominance and decomposition, and novel multi-objective particle swarm optimization using different performance metrics. The results demonstrate the superiority of the algorithm as a new many-objective algorithm for complex many-objective optimization problems.","PeriodicalId":38141,"journal":{"name":"Decision Science Letters","volume":"78 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Science Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5267/j.dsl.2023.4.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Many-objective optimization (MaO) deals with a large number of conflicting objectives in optimization problems to acquire a reliable set of appropriate non-dominated solutions near the true Pareto front, and for the same, a unique mechanism is essential. Numerous papers have reported multi-objective evolutionary algorithms to explain the absence of convergence and diversity variety in many-objective optimization problems. One of the most encouraging methodologies utilizes many reference points to segregate the solutions and guide the search procedure. The above-said methodology is integrated into the basic version of the Moth Flame Optimization (MFO) algorithm for the first time in this paper. The proposed Many-Objective Moth Flame Optimization (MaOMFO) utilizes a set of reference points progressively decided by the hunt procedure of the moth flame. It permits the calculation to combine with the Pareto front yet synchronize the decent variety of the Pareto front. MaOMFO is employed to solve a wide range of unconstrained and constrained benchmark functions and compared with other competitive algorithms, such as non-dominated sorting genetic algorithm, multi-objective evolutionary algorithm based on dominance and decomposition, and novel multi-objective particle swarm optimization using different performance metrics. The results demonstrate the superiority of the algorithm as a new many-objective algorithm for complex many-objective optimization problems.
MaOMFO:基于参考点非支配排序机制的多目标蛾焰优化器,用于全局优化问题
许多论文报道了多目标进化算法来解释多目标优化问题中缺乏收敛性和多样性变化。最令人鼓舞的方法之一是利用许多参考点来分离解决方案并指导搜索过程。本文首次将上述方法整合到蛾焰优化(MFO)算法的基本版本中。提出的多目标飞蛾火焰优化算法利用飞蛾火焰搜索过程逐步确定的一组参考点。它允许计算与帕累托前沿结合,但同步的帕累托前沿的体面变化。MaOMFO用于求解各种无约束和有约束基准函数,并与非支配排序遗传算法、基于支配和分解的多目标进化算法以及采用不同性能指标的新型多目标粒子群优化等竞争性算法进行了比较。结果表明,该算法作为一种新的多目标算法,对于复杂的多目标优化问题具有优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Decision Science Letters
Decision Science Letters Decision Sciences-Decision Sciences (all)
CiteScore
3.40
自引率
5.30%
发文量
49
审稿时长
20 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信