{"title":"Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals","authors":"Fayçal Drissi","doi":"10.1080/1350486X.2023.2241130","DOIUrl":null,"url":null,"abstract":"ABSTRACT We study a differential Riccati equation (DRE) with indefinite matrix coefficients, which arises in a wide class of practical problems. We show that the DRE solves an associated control problem, which is key to provide existence and uniqueness of a solution. As an application, we solve two algorithmic trading problems in which the agent adopts a constant absolute risk-aversion (CARA) utility function, and where the optimal strategies use signals and past observations of prices to improve their performance. First, we derive a multi-asset market making strategy in over-the-counter markets, where the market maker uses an external trading venue to hedge risk. Second, we derive an optimal trading strategy that uses prices and signals to learn the drift in the asset prices.","PeriodicalId":35818,"journal":{"name":"Applied Mathematical Finance","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Mathematical Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/1350486X.2023.2241130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 5
Abstract
ABSTRACT We study a differential Riccati equation (DRE) with indefinite matrix coefficients, which arises in a wide class of practical problems. We show that the DRE solves an associated control problem, which is key to provide existence and uniqueness of a solution. As an application, we solve two algorithmic trading problems in which the agent adopts a constant absolute risk-aversion (CARA) utility function, and where the optimal strategies use signals and past observations of prices to improve their performance. First, we derive a multi-asset market making strategy in over-the-counter markets, where the market maker uses an external trading venue to hedge risk. Second, we derive an optimal trading strategy that uses prices and signals to learn the drift in the asset prices.
期刊介绍:
The journal encourages the confident use of applied mathematics and mathematical modelling in finance. The journal publishes papers on the following: •modelling of financial and economic primitives (interest rates, asset prices etc); •modelling market behaviour; •modelling market imperfections; •pricing of financial derivative securities; •hedging strategies; •numerical methods; •financial engineering.