Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals

IF 1.1 2区 数学 Q1 MATHEMATICS
F. A. da Silva, M. Federson, E. Toon
{"title":"Existence, uniqueness, variation-of-constant formula and controllability for linear dynamic equations with Perron Δ-integrals","authors":"F. A. da Silva, M. Federson, E. Toon","doi":"10.1142/s1664360721500119","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the existence and uniqueness of a solution for a linear Volterra-Stieltjes integral equation of the second kind, as well as for a homogeneous and a nonhomogeneous linear dynamic equations on time scales, whose integral forms contain Perron [Formula: see text]-integrals defined in Banach spaces. We also provide a variation-of-constant formula for a nonhomogeneous linear dynamic equations on time scales and we establish results on controllability for linear dynamic equations. Since we work in the framework of Perron [Formula: see text]-integrals, we can handle functions not only having many discontinuities, but also being highly oscillating. Our results require weaker conditions than those in the literature. We include some examples to illustrate our main results.","PeriodicalId":9348,"journal":{"name":"Bulletin of Mathematical Sciences","volume":"13 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2021-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s1664360721500119","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we investigate the existence and uniqueness of a solution for a linear Volterra-Stieltjes integral equation of the second kind, as well as for a homogeneous and a nonhomogeneous linear dynamic equations on time scales, whose integral forms contain Perron [Formula: see text]-integrals defined in Banach spaces. We also provide a variation-of-constant formula for a nonhomogeneous linear dynamic equations on time scales and we establish results on controllability for linear dynamic equations. Since we work in the framework of Perron [Formula: see text]-integrals, we can handle functions not only having many discontinuities, but also being highly oscillating. Our results require weaker conditions than those in the literature. We include some examples to illustrate our main results.
含Perron的线性动力方程的存在唯一性、常变公式和可控性Δ-integrals
本文研究了一类线性第二类Volterra-Stieltjes积分方程,以及一类齐次和非齐次线性动力方程在时间尺度上的解的存在唯一性,这些方程的积分形式包含在Banach空间中定义的Perron[公式:见文]-积分。我们还提供了时间尺度上非齐次线性动力方程的常变公式,并建立了线性动力方程的可控性结果。由于我们在Perron积分的框架下工作,我们不仅可以处理有许多不连续的函数,而且可以处理高度振荡的函数。我们的结果需要比文献中更弱的条件。我们包括一些例子来说明我们的主要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.10
自引率
0.00%
发文量
17
审稿时长
13 weeks
期刊介绍: The Bulletin of Mathematical Sciences, a peer-reviewed, open access journal, will publish original research work of highest quality and of broad interest in all branches of mathematical sciences. The Bulletin will publish well-written expository articles (40-50 pages) of exceptional value giving the latest state of the art on a specific topic, and short articles (up to 15 pages) containing significant results of wider interest. Most of the expository articles will be invited. The Bulletin of Mathematical Sciences is launched by King Abdulaziz University, Jeddah, Saudi Arabia.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信