Using a linear subspace approach for invariant subpixel material identification in airborne hyperspectral imagery

Bea Thai, G. Healey
{"title":"Using a linear subspace approach for invariant subpixel material identification in airborne hyperspectral imagery","authors":"Bea Thai, G. Healey","doi":"10.1109/CVPR.1999.786995","DOIUrl":null,"url":null,"abstract":"We present an algorithm for subpixel material identification that is invariant to the illumination and atmospheric conditions. The target material spectral reflectance is the only prior information required by the algorithm. A target material subspace model is constructed from the reflectance using a physical model and a background subspace model is estimated directly from the image. These two subspace models are used to compute maximum likelihood estimates for the target material component and the background component at each image pixel. These estimates form the basis of a generalized likelihood ratio test for subpixel material identification. We present experimental results using HYDICE imagery that demonstrate the utility of the algorithm for subpixel material identification under varying illumination and atmospheric conditions.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"96 1","pages":"567-572 Vol. 1"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.786995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We present an algorithm for subpixel material identification that is invariant to the illumination and atmospheric conditions. The target material spectral reflectance is the only prior information required by the algorithm. A target material subspace model is constructed from the reflectance using a physical model and a background subspace model is estimated directly from the image. These two subspace models are used to compute maximum likelihood estimates for the target material component and the background component at each image pixel. These estimates form the basis of a generalized likelihood ratio test for subpixel material identification. We present experimental results using HYDICE imagery that demonstrate the utility of the algorithm for subpixel material identification under varying illumination and atmospheric conditions.
基于线性子空间方法的航空高光谱图像不变亚像素材料识别
我们提出了一种不受光照和大气条件影响的亚像素材料识别算法。该算法只需要目标材料的光谱反射率作为先验信息。利用物理模型从反射率构造目标材料子空间模型,直接从图像估计背景子空间模型。这两个子空间模型用于计算每个图像像素上目标材料成分和背景成分的最大似然估计。这些估计构成了亚像素材料识别的广义似然比检验的基础。我们展示了使用HYDICE图像的实验结果,证明了该算法在不同照明和大气条件下用于亚像素材料识别的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信