{"title":"Approximate leave-one-out error estimation for learning with smooth, strictly convex margin loss functions","authors":"Christopher P. Diehl","doi":"10.1109/MLSP.2004.1422960","DOIUrl":null,"url":null,"abstract":"Leave-one-out (LOO) error estimation is an important statistical tool for assessing generalization performance. A number of papers have focused on LOO error estimation for support vector machines, but little work has focused on LOO error estimation when learning with smooth, convex margin loss functions. We consider the problem of approximating the LOO error estimate in the context of sparse kernel machine learning. We first motivate a general framework for learning sparse kernel machines that involves minimizing a regularized, smooth, strictly convex margin loss. Then we present an approximation of the LOO error for the family of learning algorithms admissible in the general framework. We examine the implications of the approximation and review preliminary experimental results demonstrating the utility of the approach","PeriodicalId":70952,"journal":{"name":"信号处理","volume":"17 1","pages":"63-72"},"PeriodicalIF":0.0000,"publicationDate":"2004-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"信号处理","FirstCategoryId":"1093","ListUrlMain":"https://doi.org/10.1109/MLSP.2004.1422960","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Leave-one-out (LOO) error estimation is an important statistical tool for assessing generalization performance. A number of papers have focused on LOO error estimation for support vector machines, but little work has focused on LOO error estimation when learning with smooth, convex margin loss functions. We consider the problem of approximating the LOO error estimate in the context of sparse kernel machine learning. We first motivate a general framework for learning sparse kernel machines that involves minimizing a regularized, smooth, strictly convex margin loss. Then we present an approximation of the LOO error for the family of learning algorithms admissible in the general framework. We examine the implications of the approximation and review preliminary experimental results demonstrating the utility of the approach
期刊介绍:
Journal of Signal Processing is an academic journal supervised by China Association for Science and Technology and sponsored by China Institute of Electronics. The journal is an academic journal that reflects the latest research results and technological progress in the field of signal processing and related disciplines. It covers academic papers and review articles on new theories, new ideas, and new technologies in the field of signal processing. The journal aims to provide a platform for academic exchanges for scientific researchers and engineering and technical personnel engaged in basic research and applied research in signal processing, thereby promoting the development of information science and technology. At present, the journal has been included in the three major domestic core journal databases "China Science Citation Database (CSCD), China Science and Technology Core Journals (CSTPCD), Chinese Core Journals Overview" and Coaj. It is also included in many foreign databases such as Scopus, CSA, EBSCO host, INSPEC, JST, etc.