E. Trofimchuk, M. A. Moskvina, V. Shevchenko, N. Nikonorova
{"title":"Low-temperature synthesis of barium titanate in the mesoporous polyethylene matrices","authors":"E. Trofimchuk, M. A. Moskvina, V. Shevchenko, N. Nikonorova","doi":"10.30791/1028-978x-2022-3-78-86","DOIUrl":null,"url":null,"abstract":"A nanocomposite based on high-density polyethylene with barium titanate (content of 13 – 15 wt. %) was obtained as a result of low-temperature synthesis of the inorganic component directly in the mesopores of an oriented polymer matrix using the sol-gel method followed by hydrothermal treatment in an alkaline medium. Crystallization of barium titanate in nanopores is detected by X-ray phase analysis and electron microscopy to occur mainly in a cubic crystalline modification with an average crystallite size of 16 nm and to form chain structures. A comparative assessment of the dielectric properties of a polymer nanocomposite and powder barium titanate synthesized under similar conditions is carried out.","PeriodicalId":20003,"journal":{"name":"Perspektivnye Materialy","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Perspektivnye Materialy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30791/1028-978x-2022-3-78-86","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A nanocomposite based on high-density polyethylene with barium titanate (content of 13 – 15 wt. %) was obtained as a result of low-temperature synthesis of the inorganic component directly in the mesopores of an oriented polymer matrix using the sol-gel method followed by hydrothermal treatment in an alkaline medium. Crystallization of barium titanate in nanopores is detected by X-ray phase analysis and electron microscopy to occur mainly in a cubic crystalline modification with an average crystallite size of 16 nm and to form chain structures. A comparative assessment of the dielectric properties of a polymer nanocomposite and powder barium titanate synthesized under similar conditions is carried out.