{"title":"Neutron Star Mergers and the Quark Matter Equation of State","authors":"G. Mathews, Atul Kedia, H. Kim, I. Suh","doi":"10.1051/epjconf/202227401013","DOIUrl":null,"url":null,"abstract":"As neutron stars merge they can approach very high nuclear density. Here, we summarized recent results for the evolution and gravitational wave emission from binary-neutron star mergers using a a variety of nuclear equations of state with and without a crossover transition to quark matter. We discuss how the late time gravitational wave emission from binary neutron star mergers may possibly reveal the existence of a crossover transition to quark matter.","PeriodicalId":11731,"journal":{"name":"EPJ Web of Conferences","volume":"274 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Web of Conferences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/epjconf/202227401013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
As neutron stars merge they can approach very high nuclear density. Here, we summarized recent results for the evolution and gravitational wave emission from binary-neutron star mergers using a a variety of nuclear equations of state with and without a crossover transition to quark matter. We discuss how the late time gravitational wave emission from binary neutron star mergers may possibly reveal the existence of a crossover transition to quark matter.