Some Notes of Homogeneous Besov–Lorentz Spaces

IF 0.7 Q2 MATHEMATICS
Zhenzhen Lou
{"title":"Some Notes of Homogeneous Besov–Lorentz Spaces","authors":"Zhenzhen Lou","doi":"10.1155/2023/5921136","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we consider some properties of homogeneous Besov–Lorentz spaces. First, we get some relationship between <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msubsup>\n <mrow>\n <mover accent=\"true\">\n <mi>B</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msubsup>\n <mo>,</mo>\n <msubsup>\n <mrow>\n <mover accent=\"true\">\n <mi>B</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msubsup>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and Besov–Lorentz spaces, and then, we obtain the scaling property of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msubsup>\n <mrow>\n <mover accent=\"true\">\n <mi>B</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <msub>\n <mrow>\n <mover accent=\"true\">\n <mi>F</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":"348 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5921136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we consider some properties of homogeneous Besov–Lorentz spaces. First, we get some relationship between B ˙ p 0 s , q , B ˙ p 1 s , q θ , r and Besov–Lorentz spaces, and then, we obtain the scaling property of B ˙ p , r s , q and F ˙ p , r s , q .
齐次贝索夫-洛伦兹空间的若干注释
本文研究了齐次贝索夫-洛伦兹空间的一些性质。首先,我们得到了B˙的关系P 0 s, q,B˙p1秒,q θ r和贝索夫-洛伦兹空间,然后,我们得到了B˙pr s的标度性质,q和F˙P r s q。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信