{"title":"Some Notes of Homogeneous Besov–Lorentz Spaces","authors":"Zhenzhen Lou","doi":"10.1155/2023/5921136","DOIUrl":null,"url":null,"abstract":"<jats:p>In this paper, we consider some properties of homogeneous Besov–Lorentz spaces. First, we get some relationship between <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M1\">\n <msub>\n <mrow>\n <mfenced open=\"(\" close=\")\" separators=\"|\">\n <mrow>\n <msubsup>\n <mrow>\n <mover accent=\"true\">\n <mi>B</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>0</mn>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msubsup>\n <mo>,</mo>\n <msubsup>\n <mrow>\n <mover accent=\"true\">\n <mi>B</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <msub>\n <mrow>\n <mi>p</mi>\n </mrow>\n <mrow>\n <mn>1</mn>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msubsup>\n </mrow>\n </mfenced>\n </mrow>\n <mrow>\n <mi>θ</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n </msub>\n </math>\n </jats:inline-formula> and Besov–Lorentz spaces, and then, we obtain the scaling property of <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M2\">\n <msubsup>\n <mrow>\n <mover accent=\"true\">\n <mi>B</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msubsup>\n </math>\n </jats:inline-formula> and <jats:inline-formula>\n <math xmlns=\"http://www.w3.org/1998/Math/MathML\" id=\"M3\">\n <msup>\n <mrow>\n <msub>\n <mrow>\n <mover accent=\"true\">\n <mi>F</mi>\n <mo>˙</mo>\n </mover>\n </mrow>\n <mrow>\n <mi>p</mi>\n <mo>,</mo>\n <mi>r</mi>\n </mrow>\n </msub>\n </mrow>\n <mrow>\n <mi>s</mi>\n <mo>,</mo>\n <mi>q</mi>\n </mrow>\n </msup>\n </math>\n </jats:inline-formula>.</jats:p>","PeriodicalId":43667,"journal":{"name":"Muenster Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Muenster Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/5921136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we consider some properties of homogeneous Besov–Lorentz spaces. First, we get some relationship between and Besov–Lorentz spaces, and then, we obtain the scaling property of and .