Peining Zhen, Hai-Bao Chen, Yuan Cheng, Zhigang Ji, Bin Liu, Hao Yu
{"title":"Fast Video Facial Expression Recognition by a Deeply Tensor-Compressed LSTM Neural Network for Mobile Devices","authors":"Peining Zhen, Hai-Bao Chen, Yuan Cheng, Zhigang Ji, Bin Liu, Hao Yu","doi":"10.1145/3464941","DOIUrl":null,"url":null,"abstract":"Mobile devices usually suffer from limited computation and storage resources, which seriously hinders them from deep neural network applications. In this article, we introduce a deeply tensor-compressed long short-term memory (LSTM) neural network for fast video-based facial expression recognition on mobile devices. First, a spatio-temporal facial expression recognition LSTM model is built by extracting time-series feature maps from facial clips. The LSTM-based spatio-temporal model is further deeply compressed by means of quantization and tensorization for mobile device implementation. Based on datasets of Extended Cohn-Kanade (CK+), MMI, and Acted Facial Expression in Wild 7.0, experimental results show that the proposed method achieves 97.96%, 97.33%, and 55.60% classification accuracy and significantly compresses the size of network model up to 221× with reduced training time per epoch by 60%. Our work is further implemented on the RK3399Pro mobile device with a Neural Process Engine. The latency of the feature extractor and LSTM predictor can be reduced 30.20× and 6.62× , respectively, on board with the leveraged compression methods. Furthermore, the spatio-temporal model costs only 57.19 MB of DRAM and 5.67W of power when running on the board.","PeriodicalId":29764,"journal":{"name":"ACM Transactions on Internet of Things","volume":"13 1","pages":"1 - 26"},"PeriodicalIF":3.5000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Internet of Things","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3464941","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 8
Abstract
Mobile devices usually suffer from limited computation and storage resources, which seriously hinders them from deep neural network applications. In this article, we introduce a deeply tensor-compressed long short-term memory (LSTM) neural network for fast video-based facial expression recognition on mobile devices. First, a spatio-temporal facial expression recognition LSTM model is built by extracting time-series feature maps from facial clips. The LSTM-based spatio-temporal model is further deeply compressed by means of quantization and tensorization for mobile device implementation. Based on datasets of Extended Cohn-Kanade (CK+), MMI, and Acted Facial Expression in Wild 7.0, experimental results show that the proposed method achieves 97.96%, 97.33%, and 55.60% classification accuracy and significantly compresses the size of network model up to 221× with reduced training time per epoch by 60%. Our work is further implemented on the RK3399Pro mobile device with a Neural Process Engine. The latency of the feature extractor and LSTM predictor can be reduced 30.20× and 6.62× , respectively, on board with the leveraged compression methods. Furthermore, the spatio-temporal model costs only 57.19 MB of DRAM and 5.67W of power when running on the board.