{"title":"Closed loop control system for a heliostat field","authors":"J. Freeman, K. Keerthi, L. R. Chandran","doi":"10.1109/TAPENERGY.2015.7229630","DOIUrl":null,"url":null,"abstract":"The alarming energy crisis, heightened by the continuing depletion of fossil fuels, accentuates the need for the development of renewable energy technology, knowledge, and infrastructure. A Central Receiver (Power Tower) Solar Energy system uses heliostats (motorized planar reflectors) to continuously reflect direct radiation from the sun onto a central receiver. This paper discusses a novel closed loop control system for a heliostat field. In this system, rough adjustment of the heliostat is performed using an Inertial Measurement Unit (IMU). Precision adjustment of the heliostat is performed by inducing a small mechanical vibration in the heliostat's reflective surface, using a piezoelectric actuator. This vibration creates time-dependent changes in the light waves reflected from the heliostat, which can be detected by photo-sensors surrounding the thermal receiver target. The position of misaligned heliostats can be corrected once they are identified by FFT analysis of the light waves received by the photo-sensors. This technique can, in principle, control thousands of heliostats simultaneously. The control system is coded using MATLAB.","PeriodicalId":6552,"journal":{"name":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","volume":"1 1","pages":"272-277"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 International Conference on Technological Advancements in Power and Energy (TAP Energy)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TAPENERGY.2015.7229630","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
The alarming energy crisis, heightened by the continuing depletion of fossil fuels, accentuates the need for the development of renewable energy technology, knowledge, and infrastructure. A Central Receiver (Power Tower) Solar Energy system uses heliostats (motorized planar reflectors) to continuously reflect direct radiation from the sun onto a central receiver. This paper discusses a novel closed loop control system for a heliostat field. In this system, rough adjustment of the heliostat is performed using an Inertial Measurement Unit (IMU). Precision adjustment of the heliostat is performed by inducing a small mechanical vibration in the heliostat's reflective surface, using a piezoelectric actuator. This vibration creates time-dependent changes in the light waves reflected from the heliostat, which can be detected by photo-sensors surrounding the thermal receiver target. The position of misaligned heliostats can be corrected once they are identified by FFT analysis of the light waves received by the photo-sensors. This technique can, in principle, control thousands of heliostats simultaneously. The control system is coded using MATLAB.