The flatness of ternary cyclotomic polynomials

Bin Zhang
{"title":"The flatness of ternary cyclotomic polynomials","authors":"Bin Zhang","doi":"10.4171/rsmup/47","DOIUrl":null,"url":null,"abstract":"It is well known that all of the prime cyclotomic polynomials and binary cyclotomic polynomials are flat, and the flatness of ternary cyclotomic polynomials is much more complicated. Let p < q < r be odd primes such that zr ≡ ±1 (mod pq), where z is a positive integer. So far, the classification of flat ternary cyclotomic polynomials for 1 ≤ z ≤ 5 has been given. In this paper, for z = 6 and q ≡ ±1 (mod p), we give the necessary and sufficient conditions for ternary cyclotomic polynomials Φpqr(x) to be flat. Mathematics Subject Classification (2010). 11B83, 11C08, 11N56.","PeriodicalId":20997,"journal":{"name":"Rendiconti del Seminario Matematico della Università di Padova","volume":"463 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2020-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rendiconti del Seminario Matematico della Università di Padova","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/rsmup/47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

It is well known that all of the prime cyclotomic polynomials and binary cyclotomic polynomials are flat, and the flatness of ternary cyclotomic polynomials is much more complicated. Let p < q < r be odd primes such that zr ≡ ±1 (mod pq), where z is a positive integer. So far, the classification of flat ternary cyclotomic polynomials for 1 ≤ z ≤ 5 has been given. In this paper, for z = 6 and q ≡ ±1 (mod p), we give the necessary and sufficient conditions for ternary cyclotomic polynomials Φpqr(x) to be flat. Mathematics Subject Classification (2010). 11B83, 11C08, 11N56.
三元环多项式的平坦性
素数分环多项式和二元分环多项式都是平坦的,而三元分环多项式的平坦性要复杂得多。设p < q < r为奇素数,使得zr≡±1 (mod pq),其中z为正整数。目前为止,已经给出了1≤z≤5的平面三元环多项式的分类。对于z = 6且q≡±1 (mod p),给出了三元环多项式Φpqr(x)平坦的充分必要条件。数学学科分类(2010)。11b83, 11c08, 11n56。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信