Optimal shape parameter for meshless solution of the 2D Helmholtz equation

Mauricio Alejandro Londoño-Arboleda, Hebert Montegranario-Riascos
{"title":"Optimal shape parameter for meshless solution of the 2D Helmholtz equation","authors":"Mauricio Alejandro Londoño-Arboleda, Hebert Montegranario-Riascos","doi":"10.29047/01225383.178","DOIUrl":null,"url":null,"abstract":"The solution of the Helmholtz equation is a fundamental step in frequency domain seismic imaging. This paper deals with a numerical study of solutions for 2D Helmholtz equation using a Gaussian radial basis function-generated finite difference scheme (RBFFD). We analyze the behavior of the local truncation error in approximating partial derivatives of the 2D Helmholtz equation solutions when the shape parameter of RBF varies. For discretization, we performed, by means of a classical numerical dispersion analysis with plane waves, a minimization of the error function to obtain local and adaptive near optimal shape parameters according to the local wavelength of the required solution. In particular, the method is applied to obtain a simple and accurate solver by using stencils which seven nodes on hexagonal regular grids, wich mitigate pollution-effects. We validated numerically that the stability and isotropy are enhanced with respect to Cartesian grids. Our method is tested with standard case studies and velocity models, showing similar or better accuracy than finite difference and finite element methods. This is an efficient way for interacting with inverse and imaging problems such as Full Wave Inversion.","PeriodicalId":10745,"journal":{"name":"CT&F - Ciencia, Tecnología y Futuro","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CT&F - Ciencia, Tecnología y Futuro","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29047/01225383.178","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The solution of the Helmholtz equation is a fundamental step in frequency domain seismic imaging. This paper deals with a numerical study of solutions for 2D Helmholtz equation using a Gaussian radial basis function-generated finite difference scheme (RBFFD). We analyze the behavior of the local truncation error in approximating partial derivatives of the 2D Helmholtz equation solutions when the shape parameter of RBF varies. For discretization, we performed, by means of a classical numerical dispersion analysis with plane waves, a minimization of the error function to obtain local and adaptive near optimal shape parameters according to the local wavelength of the required solution. In particular, the method is applied to obtain a simple and accurate solver by using stencils which seven nodes on hexagonal regular grids, wich mitigate pollution-effects. We validated numerically that the stability and isotropy are enhanced with respect to Cartesian grids. Our method is tested with standard case studies and velocity models, showing similar or better accuracy than finite difference and finite element methods. This is an efficient way for interacting with inverse and imaging problems such as Full Wave Inversion.
二维亥姆霍兹方程无网格解的最优形状参数
亥姆霍兹方程的求解是频域地震成像的基本步骤。本文用高斯径向基函数生成有限差分格式(RBFFD)对二维亥姆霍兹方程的解进行了数值研究。分析了当RBF形状参数变化时,二维亥姆霍兹方程解的偏导数逼近时局部截断误差的变化规律。对于离散化,我们采用经典的平面波数值色散分析方法,对误差函数进行最小化,以根据所需解的局部波长获得局部和自适应的近最优形状参数。特别地,该方法通过在六边形规则网格上使用七个节点的模板来获得简单准确的求解,从而减轻了污染影响。数值验证了相对于直角网格,网格的稳定性和各向同性得到了增强。我们的方法用标准案例研究和速度模型进行了测试,显示出与有限差分和有限元方法相似或更好的准确性。这是解决全波反演等反演和成像问题的有效方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信