On Egyptian fractions of length 3

IF 0.6 4区 数学 Q3 MATHEMATICS
C. Banderier, Carlos Alexis Gómez Ruiz, F. Luca, F. Pappalardi, Enrique Treviño
{"title":"On Egyptian fractions of length 3","authors":"C. Banderier, Carlos Alexis Gómez Ruiz, F. Luca, F. Pappalardi, Enrique Treviño","doi":"10.33044/REVUMA.1798","DOIUrl":null,"url":null,"abstract":"Let a, n be positive integers that are relatively prime. We say that a/n can be represented as an Egyptian fraction of length k if there exist positive integers m1, . . . ,mk such that a n = 1 m1 + · · ·+ 1 mk . Let Ak(n) be the number of solutions a to this equation. In this article, we give a formula for A2(p) and a parametrization for Egyptian fractions of length 3, which allows us to give bounds to A3(n), to fa(n) = #{(m1,m2,m3) : a n = 1 m1 + 1 m2 + 1 m3 }, and finally to F (n) = #{(a,m1,m2,m3) : a n = 1 m1 + 1 m2 + 1 m3 }.","PeriodicalId":54469,"journal":{"name":"Revista De La Union Matematica Argentina","volume":"27 1","pages":"257-274"},"PeriodicalIF":0.6000,"publicationDate":"2021-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista De La Union Matematica Argentina","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.33044/REVUMA.1798","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let a, n be positive integers that are relatively prime. We say that a/n can be represented as an Egyptian fraction of length k if there exist positive integers m1, . . . ,mk such that a n = 1 m1 + · · ·+ 1 mk . Let Ak(n) be the number of solutions a to this equation. In this article, we give a formula for A2(p) and a parametrization for Egyptian fractions of length 3, which allows us to give bounds to A3(n), to fa(n) = #{(m1,m2,m3) : a n = 1 m1 + 1 m2 + 1 m3 }, and finally to F (n) = #{(a,m1,m2,m3) : a n = 1 m1 + 1 m2 + 1 m3 }.
长度为3的埃及分数
设a n是相对素数的正整数。我们说,如果存在正整数m1,…,a/n可以表示为长度k的埃及分数。,mk使得a n = 1 m1 +···+ 1 mk。设Ak(n)是这个方程a的解的个数。在本文中,我们给出了A2(p)的公式和长度为3的埃及分数的参数化,它允许我们给出A3(n), fa(n) = #{(m1,m2,m3): an = 1 m1 + 1 m2 + 1 m3}的边界,最后是F (n) = #{(a,m1,m2,m3): an = 1 m1 + 1 m2 + 1 m3}的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Revista De La Union Matematica Argentina
Revista De La Union Matematica Argentina MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.70
自引率
0.00%
发文量
39
审稿时长
>12 weeks
期刊介绍: Revista de la Unión Matemática Argentina is an open access journal, free of charge for both authors and readers. We publish original research articles in all areas of pure and applied mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信